Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Sensory processing disorder since 1994 is accepted in the Diagnostic Classification of Mental Health and Developmental Disorders of Infancy and Early Childhood (DC:0-3R) and is not recognized as a mental disorder in medical manuals such as the ICD-10 or the DSM-5.
Diagnosis is primarily arrived at by the use of standardized tests, standardized questionnaires, expert observational scales, and free play observation at an occupational therapy gym. Observation of functional activities might be carried at school and home as well. Some scales that are not exclusively used in SPD evaluations are used to measure visual perception, function, neurology and motor skills.
Depending on the country, diagnosis is made by different professionals, such as occupational therapists, psychologists, learning specialists, physiotherapists and/or speech and language therapists. In some countries it is recommended to have a full psychological and neurological evaluation if symptoms are too severe.
It is estimated that up to 16.5% of elementary school aged children present elevated SOR behaviors in the tactile or auditory modalities. However, this figure might represent an underestimation of Sensory Over Responsivity prevalence, since this study did not include children with developmental disorders or those delivered preterm, who are more likely to present it.
This figure is, nonetheless, larger than what previous studies with smaller samples had shown: an estimate of 5–13% of elementary school aged children.
Incidence for the remaining subtypes is currently unknown.
1. SCAN is the most common tool for diagnosing APD, and it also standardized. It is composed for four subsets: discrimination of monaurally presented single words against background noise, acoustically degraded single words, dichotically presented single words, sentence stimuli. Different versions of the test are used depending on the age of the patient.
2. Random Gap Detection Test (RGDT) is also a standardized test. It assesses an individual’s gap detection threshold of tones and white noise. The exam includes stimuli at four different frequencies (500, 1000, 2000, and 4000 Hz) and white noise clicks of 50 ms duration. It is a useful test because it provides an index of auditory temporal resolution. In children, an overall gap detection threshold greater than 20 ms means they have failed.
3. Gaps in Noise Test (GIN) also measures temporal resolution by testing the patient's gap detection threshold in white noise.
4. Pitch Patterns Sequence Test (PPT) and Duration Patterns Sequence Test (DPT) measure auditory pattern identification. The PPS has s series of three tones presented at either of two pitches (high or low). Meanwhile, the DPS has a series of three tones that vary in duration rather than pitch (long or short). Patients are then asked to describe the pattern of pitches presented.
It has been discovered that APD and ADHD present overlapping symptoms. Below is a ranked order of behavioral symptoms that are most frequently observed in each disorder. Professionals evaluated the overlap of symptoms between the two disorders. The order below is of symptoms that are almost always observed. This chart proves that although the symptoms listed are different, it is easy to get confused between many of them.
There is a high rate of co-occurrence between AD/HD and CAPD. Research shows that 84% of children with APD have confirmed or suspected ADHD. Co-occurrence between ADHD and APD is 41% for children with confirmed diagnosis of ADHD, and 43% for children suspected of having ADHD.
Assessments for developmental coordination disorder typically require a developmental history, detailing ages at which significant developmental milestones, such as crawling and walking, occurred. Motor skills screening includes activities designed to indicate developmental coordination disorder, including balancing, physical sequencing, touch sensitivity, and variations on walking activities.
The American Psychiatric Association has four primary inclusive diagnostic criteria for determining if a child has developmental coordination disorder.
The criteria are as follows:
1. Motor Coordination will be greatly reduced, although the intelligence of the child is normal for the age.
2. The difficulties the child experiences with motor coordination or planning interfere with the child's daily life.
3. The difficulties with coordination are not due to any other medical condition
4. If the child does also experience comorbidities such as mental retardation; motor coordination is still disproportionally affected.
Screening tests which can be used to assess developmental coordination disorder include:-
- Movement Assessment Battery for Children (Movement-ABC – Movement-ABC 2)
- Peabody Developmental Motor Scales- Second Edition (PDMS-2)
- Bruininks-Oseretsky Test of Motor Proficiency (BOTMP-BOT-2)
- Motoriktest für vier- bis sechsjährige Kinder (MOT 4-6)
- Körperkoordinationtest für Kinder (KTK)
- Test of Gross Motor Development, Second Edition (TGMD-2)
- Maastrichtse Motoriek Test (MMT)
- Wechsler Adult Intelligence Scale (WAIS-IV)
- Wechsler Individual Achievement Test (WAIT-II)
- Test of Word Reading Efficiency (TOWRE-2)
- Developmental Coordination Disorder Questionnaire (DCD-Q)
- Children's Self-Perceptions of Adequacy in, and Predilection for Physical Activity (CSAPPA)
Currently there is no single gold standard assessment test.
A baseline motor assessment establishes the starting point for developmental intervention programs. Comparing children to normal rates of development may help to establish areas of significant difficulty.
However, research in the "British Journal of Special Education" has shown that knowledge is severely limited in many who should be trained to recognise and respond to various difficulties, including developmental coordination disorder, dyslexia and deficits in attention, motor control and perception (DAMP). The earlier that difficulties are noted and timely assessments occur, the quicker intervention can begin. A teacher or GP could miss a diagnosis if they are only applying a cursory knowledge.
"Teachers will not be able to recognise or accommodate the child with learning difficulties in class if their knowledge is limited. Similarly GPs will find it difficult to detect and appropriately refer children with learning difficulties."
Developmental coordination disorder is a lifelong neurological condition that is more common in males than in females, with a ratio of approximately four males to every female. The exact proportion of people with the disorder is unknown since the disorder can be difficult to detect due to a lack of specific laboratory tests, thus making diagnosis of the condition one of elimination of all other possible causes/diseases. Approximately 5–6% of children are affected by this condition.
The nature of the alleged mental representations that underlie the act of pointing to target body parts have been a controversial issue. Originally, it was diagnosed as the effects of general mental deterioration or of aphasia on the task of pointing to body parts on verbal command. However, contemporary neuropsychological therapy seeks to establish the independence of autotopagnosia from other disorders. With such a general definition, a patient that presents with a dysfunction of or failure in accessing one of four mental representation systems suffers from autotopagnosia. Through observational testing, the type of mental misrepresentation of the body can be deduced: whether "semantic", "visuospatial", "somatosensory", or "motor misrepresentations". Neuropsychological tests can provide a proper diagnosis in regards to the specificity of patient’s agnosic condition.
1) Test 1: Body Part Localization: Free vision and no vision conditions
2) Test 2: On-line positioning of body vis-à-vis objects
3) Test 3: Localization of objects on the body surface
4) Test 4: Body part semantic knowledge
5) Test 5: Matching body parts: Effect of viewing angle
Many normed assessments can be used in evaluating skills in the primary academic domains: reading, including word recognition, fluency, and comprehension; mathematics, including computation and problem solving; and written expression, including handwriting, spelling and composition.
The most commonly used comprehensive achievement tests include the Woodcock-Johnson IV (WJ IV), Wechsler Individual Achievement Test II (WIAT II), the Wide Range Achievement Test III (WRAT III), and the Stanford Achievement Test–10th edition. These tests include measures of many academic domains that are reliable in identifying areas of difficulty.
In the reading domain, there are also specialized tests that can be used to obtain details about specific reading deficits. Assessments that measure multiple domains of reading include Gray's Diagnostic Reading Tests–2nd edition (GDRT II) and the Stanford Diagnostic Reading Assessment. Assessments that measure reading subskills include the Gray Oral Reading Test IV – Fourth Edition (GORT IV), Gray Silent Reading Test, Comprehensive Test of Phonological Processing (CTOPP), Tests of Oral Reading and Comprehension Skills (TORCS), Test of Reading Comprehension 3 (TORC-3), Test of Word Reading Efficiency (TOWRE), and the Test of Reading Fluency. A more comprehensive list of reading assessments may be obtained from the Southwest Educational Development Laboratory.
The purpose of assessment is to determine what is needed for intervention, which also requires consideration of contextual variables and whether there are comorbid disorders that must also be identified and treated, such as behavioral issues or language delays. These contextual variables are often assessed using parent and teacher questionnaire forms that rate the students' behaviors and compares them to standardized norms.
However, caution should be made when suspecting the person with a learning disability may also have dementia, especially as people with Down's syndrome may have the neuroanatomical profile but not the associated clinical signs and symptoms. Examination can be carried out of executive functioning as well as social and cognitive abilities but may need adaptation of standardized tests to take account of special needs.
Diagnosis of any cerebellar disorder or syndrome should be made by a qualified neurologist. Prior to referring a patient to a neurologist, a general practitioner or MS nurse will perform a finger-to-nose test. The clinician will raise a finger in front of the patient and ask him to touch it with his finger and then touch his nose with his forefinger several times. This shows a patient’s ability to judge the position of a target. Other tests that could be performed are similar in nature and include a heel to shin test in which proximal overshoot characterizes dysmetria and an inability to draw an imaginary circle with the arms or legs without any decomposition of movement. After a positive result in the finger-to-nose test, a neurologist will do a magnetic resonance image (MRI) to determine any damage to the cerebellum.
Cerebellar patients encounter difficulties to adapt to unexpected changes of the inertia of the limbs. This can be used to increase dysmetria and confirm a diagnosis of cerebellar dysfunction. Patients also show an abnormal response to changes in damping. These findings confirm a role of the cerebellum in predictions.
Sensory dysfunction disorder is a reported neurological disorder of information processing, characterized by difficulty in understanding and responding appropriately to sensory inputs. Sensory dysfunction disorder is not recognized by the American Medical Association. "Sensory processing (SP) difficulties have been reported in as many as 95% of children with autism, however, empirical research examining the existence of specific patterns of SP difficulties within this population is scarce."
The brain receives messages from the body's sensory systems, which informs the brain of what is going on around and to a person's body. If one or more of these systems become overstimulated, it may result in what is known as Sensory Dysfunction Disorder. An example of a response to overstimulation is expressed by A. Jean Ayres, in "Sensory Integration and the Child: Understanding Hidden Sensory Challenges". She writes, "When the flow of sensations is disorganized, life can be like a rush-hour traffic jam” (p. 289). The following sensory systems are broken down into individual categories to better understand the impact a sensitivity can have on an individual.
As autotopagnosia is not a life-threatening condition it is not on the forefront of medical research. Rather, more research is conducted regarding treatments and therapies to alleviate the lesions and traumas that can cause autotopagnosia. Of all the agnosias, visual agnosia is the most common subject of investigation because it is easiest to assess and has the most promise for potential treatments. Most autotopagnosia studies are centered on a few test subjects as part of a group of unaffected or “controlled” participants, or a simple case study. Case studies surrounding a single patient are most common due to the vague nature of the disease.
Learning disabilities can be categorized by either the type of information processing affected by the disability or by the specific difficulties caused by a processing deficit.
Specialists, like ophthalmologists or audiologists, can test for perceptual abilities. Detailed testing is conducted, using specially formulated assessment materials, and referrals to neurological specialists is recommended to support a diagnosis via brain imaging or recording techniques. The separate stages of information processing in the object recognition model are often used to localize the processing level of the deficit.
Testing usually consists of object identification and perception tasks including:
- object-naming tasks
- object categorization or figure matching
- drawing or copying real objects or images or illustrations
- unusual views tests
- overlapping line drawings
- partially degraded or fragmented image identification
- face or feature analysis
- fine line judgment
- figure contour tracking
- visual object description
- object-function miming
- tactile ability tests (naming by touch)
- auditory presentation identification
Sensory modality testing allows practitioners to assess for generalized versus specific deficits, distinguishing visual agnosias from optic aphasia, which is a more generalized deficit in semantic knowledge for objects that spans multiple sensory modalities, indicating an impairment in the semantic representations themselves.
Researchers now are testing different possibilities for treating dysmetria and ataxia. One opportunity for treatment is called rehearsal by eye movement. It is believed that visually guided movements require both lower- and higher-order visual functioning by first identifying a target location and then moving to acquire what is sought after. In one study, researchers used visually guided stepping which is parallel to visually guided arm movements to test this treatment. The patients suffered from saccadic dysmetria which in turn caused them to overshoot their movements 3. The patients first walked normally and were then told to twice review the area that was to be walked through 3. After rehearsal with eye movements, the patients improved their motor performance. Researchers believe that prior rehearsal with the eyes might be enough for a patient who suffers from motor dysmetria as a result of saccadic dysmetria to complete a motor task with enhanced spatial awareness.
Research has also been done for those patients who suffer from MS. Deep brain stimulation (DBS) remains a viable possibility for some MS patients though the long-term effects of this treatment are currently under review. The subjects who have undergone this treatment had no major relapse for six months and disabling motor function problems. Most subjects benefited from the implantation of the electrodes and some reported that their movement disorder was gone after surgery. However, these results are limiting at this time because of the small range of subjects who were used for the experiment and it is unknown whether this is a viable option for all MS patients who suffer from motor control problems.
There are ways that children with Sensory Dysfunction Disorder may still have fun. The book "The Out-of-Sync Child Has Fun Activities for Kids with Sensory Processing Disorder", written by Carol Stock Kranowitz, M.A., provides different activities for the various sensory systems. These activities can be tools to help strengthen these senses.
Developmental verbal dyspraxia is a developmental inability to motor plan volitional movement for the production of speech in the absence of muscular weakness. Research has suggested links to the FOXP2 gene.
Treatment consists of physical rehabilitation programs designed to improve overall function, increase strength and improve balance. The ultimate goal is to increase the patient's degree of independence, thus improving the patient's quality of life. Exercise typically begins with simple movements, gradually transitioning into more complex actions. Various aspects of treatment are assessed based on the individual patient's condition, utilizing many assessment tools:
- Functional Reach Test
- External Perturbation Test – Push, Release
- External Perturbation Test – Pull
- Clinical Sensory Integration Test
- Single Leg Stance Test
- Five Times Sit to Stand Test
Various scales are also utilized
- Brief Ataxia Rating Scale
- Friedreich's Ataxia Impact Scale
- Scale For Assessment and Rating of Ataxia
The first diagnosed case of ASD was published in 1943 by American psychiatrist Leo Kanner. There is a wide range of cases and severity to ASD so it is very hard to detect the first signs of ASD. A diagnosis of ASD can be made accurately before the child is 3 years old, but the diagnosis of ASD is not commonly confirmed until the child is somewhat older. The age of diagnosis can range from 9 months to 14 years, and the mean age is 4 years old in the USA. On average each case of ASD is tested at three different diagnostic centers before confirmed. Early diagnosis of the disorder can diminish familial stress, speed up referral to special educational programs and influence family planning.
Tests of vestibular system (balance) function include electronystagmography (ENG), Videonystagmograph (VNG), rotation tests, Computerized Dynamic Posturography (CDP), and Caloric reflex test.
Tests of auditory system (hearing) function include pure-tone audiometry, speech audiometry, acoustic-reflex, electrocochleography (ECoG), otoacoustic emissions (OAE), and auditory brainstem response test (ABR; also known as BER, BSER, or BAER).
Other diagnostic tests include magnetic resonance imaging (MRI) and computerized axial tomography (CAT, or CT).
Diagnosis consists of a variety of tests, including but not limited to:
- Measurement of orthostatic blood pressure
- Coordination
- rapid, alternating movements
- stroking of heel from along the opposite shin from knee to ankle
- finger-to-nose testing.
- Primary sensory modalities are examined with the following methods, searching for focal sensory loss, graded distal sensory loss, or levels of decreased sensation, hyperesthesia or dysesthesia.
- light touch
- pin-prick
- temperature
- position
- vibration
- Focused gait examination, which examines stationary position and walking abnormalities. Walking generally exposes any faults within the complex neurological communication between systems as weight is shifted from one foot to the other.
There is no cure for ASD and proper treatment depends on the case and what is most struggled with. Autism spectrum disorder is like many other disorders where when diagnosed early, can be better treated. Different types of therapy are helpful such as music therapy and physical therapy. Other treatments include auditory training, discrete trial training, facilitated communication, and sensory integration therapy.
There are two types of Apraxia. Developmental (or Childhood Apraxia of speech) or acquired Apraxia. Childhood apraxia of speech (CAS) is a neurological childhood speech sound disorder that involves impaired precision and consistency of movements required for speech production without any neuromuscular deficits (ASHA, 2007a, Definitions of CAS section, para. 1). Both are the inability to plan volitional motor movements for speech production in the absence of muscular weakness. Apraxia is not a result of sensory problems, or physical issues with the articulatory structures themselves, simply the way the brain plans to move them.
Serotonin and norepinephrine reuptake inhibitor, venlafaxine, were given to case study KS four months after initial stroke that started symptoms of witzelsucht. Changes back to his original behavior were noticeable after daily dose of 37.5 mg of venlafaxine for two weeks. In subsequent two months, inappropriate jokes and hypersexual behavior were rarely noticed. Due to the rareness of this disorder, not much research into potential treatments has been conducted.
The difficulty of making the right vestibular diagnosis is reflected in the fact that in some populations, more than one third of the patients with a vestibular disease consult more than one physician – in some cases up to more than fifteen.
Diagnosis of a balance disorder is complicated because there are many kinds of balance disorders and because other medical conditions—including ear infections, blood pressure changes, and some vision problems—and some medications may contribute to a balance disorder. A person experiencing dizziness should see a physiotherapist or physician for an evaluation. A physician can assess for a medical disorder, such as a stroke or infection, if indicated. A physiotherapist can assess balance or a dizziness disorder and provide specific treatment.
The primary physician may request the opinion of an otolaryngologist to help evaluate a balance problem. An otolaryngologist is a physician/surgeon who specializes in diseases and disorders of the ear, nose, throat, head, and neck, sometimes with expertise in balance disorders. He or she will usually obtain a detailed medical history and perform a physical examination to start to sort out possible causes of the balance disorder. The physician may require tests and make additional referrals to assess the cause and extent of the disruption of balance. The kinds of tests needed will vary based on the patient's symptoms and health status. Because there are so many variables, not all patients will require every test.