Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
When suspected, the diagnosis can be confirmed by laboratory measurement of IgA level in the blood. SigAD is an IgA level < 7 mg/dL with normal IgG and IgM levels (reference range 70–400 mg/dl for adults; children somewhat less).
Prognosis is excellent, although there is an association with autoimmune disease. Of note, selective IgA deficiency can complicate the diagnosis of one such condition, celiac disease, as the deficiency masks the high levels of certain IgA antibodies usually seen in celiac disease.
As opposed to the related condition CVID, selective IgA deficiency is not associated with an increased risk of cancer.
Patients with Selective IgA deficiency are at risk of anaphylaxis from blood transfusions. These patients should receive IgA free containing blood products and ideally blood from IgA-deficient donors.
XLA diagnosis usually begins due to a history of recurrent infections, mostly in the respiratory tract, through childhood. This is due to humoral immunodeficiency. The diagnosis is probable when blood tests show the complete lack of circulating B cells (determined by the B cell marker CD19 and/or CD20), as well as low levels of all antibody classes, including IgG, IgA, IgM, IgE and IgD.
When XLA is suspected, it is possible to do a Western Blot test to determine whether the Btk protein is being expressed. Results of a genetic blood test confirm the diagnosis and will identify the specific Btk mutation, however its cost prohibits its use in routine screening for all pregnancies. Women with an XLA patient in their family should seek genetic counseling before pregnancy.Although the symptoms of a XLA and other primary immune diseases (PID) include repeated and often severe infections, the average time for a diagnosis of a PID can be up to 10 years.
Serology (detection on antibodies to a specific pathogen or antigen) is often used to diagnose viral diseases. Because XLA patients lack antibodies, these tests always give a negative result regardless of their real condition. This applies to standard HIV tests. Special blood tests (such as the western blot based test) are required for proper viral diagnosis in XLA patients.
It is not recommended and dangerous for XLA patients to receive live attenuated vaccines such as live polio, or the measles, mumps, rubella (MMR vaccine). Special emphasis is given to avoiding the oral live attenuated SABIN-type polio vaccine that has been reported to cause polio to XLA patients. Furthermore, it is not known if active vaccines in general have any beneficial effect on XLA patients as they lack normal ability to maintain immune memory.
XLA patients are specifically susceptible to viruses of the Enterovirus family, and mostly to: polio virus, coxsackie virus (hand, foot, and mouth disease) and Echoviruses. These may cause severe central nervous system conditions as chronic encephalitis, meningitis and death. An experimental anti-viral agent, pleconaril, is active against picornaviruses. XLA patients, however, are apparently immune to the Epstein-Barr virus (EBV), as they lack mature B cells (and so HLA co-receptors) needed for the viral infection. Patients with XLA are also more likely to have a history of septic arthritis.
It is not known if XLA patients are able to generate an allergic reaction, as they lack functional IgE antibodies.There is no special hazard for XLA patients in dealing with pets or outdoor activities. Unlike in other primary immunodeficiencies XLA patients are at no greater risk for developing autoimmune illnesses.
Agammaglobulinemia (XLA) is similar to the primary immunodeficiency disorder Hypogammaglobulinemia (CVID), and their clinical conditions and treatment are almost identical. However, while XLA is a congenital disorder, with known genetic causes, CVID may occur in adulthood and its causes are not yet understood.
XLA was also historically mistaken as Severe Combined Immunodeficiency (SCID), a much more severe immune deficiency ("Bubble boys").A strain of laboratory mouse, XID, is used to study XLA. These mice have a mutated version of the mouse Btk gene, and exhibit a similar, yet milder, immune deficiency as in XLA.
The following types of CVID have been identified, and correspond to mutations in different gene segments.
The basic tests performed when an immunodeficiency is suspected should include a full blood count (including accurate lymphocyte and granulocyte counts) and immunoglobulin levels (the three most important types of antibodies: IgG, IgA and IgM).
Other tests are performed depending on the suspected disorder:
- Quantification of the different types of mononuclear cells in the blood (i.e. lymphocytes and monocytes): different groups of T lymphocytes (dependent on their cell surface markers, e.g. CD4+, CD8+, CD3+, TCRαβ and TCRγδ), groups of B lymphocytes (CD19, CD20, CD21 and Immunoglobulin), natural killer cells and monocytes (CD15+), as well as activation markers (HLA-DR, CD25, CD80 (B cells).
- Tests for T cell function: skin tests for delayed-type hypersensitivity, cell responses to mitogens and allogeneic cells, cytokine production by cells
- Tests for B cell function: antibodies to routine immunisations and commonly acquired infections, quantification of IgG subclasses
- Tests for phagocyte function: reduction of nitro blue tetrazolium chloride, assays of chemotaxis, bactericidal activity.
Due to the rarity of many primary immunodeficiencies, many of the above tests are highly specialised and tend to be performed in research laboratories.
Criteria for diagnosis were agreed in 1999. For instance, an antibody deficiency can be diagnosed in the presence of low immunoglobulins, recurrent infections and failure of the development of antibodies on exposure to antigens. The 1999 criteria also distinguish between "definitive", "probable" and "possible" in the diagnosis of primary immunodeficiency. "Definitive" diagnosis is made when it is likely that in 20 years, the patient has a >98% chance of the same diagnosis being made; this level of diagnosis is achievable with the detection of a genetic mutation or very specific circumstantial abnormalities. "Probable" diagnosis is made when no genetic diagnosis can be made, but the patient has all other characteristics of a particular disease; the chance of the same diagnosis being made 20 years later is estimated to be 85-97%. Finally, a "possible" diagnosis is made when the patient has only some of the characteristics of a disease are present, but not all.
According to a European registry study, the mean age at onset of symptoms was 26.3 years old. As per the criteria laid out by ESID (European Society for Immunodeficiencies) and PAGID (Pan-American Group for Immunodeficiency), CVID is diagnosed if:
- the person presents with a marked decrease of serum IgG levels (<4.5 g/L) and a marked decrease below the lower limit of normal for age in at least one of the isotypes IgM or IgA;
- the person is four years of age or older;
- the person lacks antibody immune response to protein antigens or immunization.
Diagnosis is chiefly by exclusion, i.e. alternative causes of hypogammaglobulinemia, such as X-linked agammaglobulinemia, must be excluded before a diagnosis of CVID can be made.
Diagnosis is difficult because of the diversity of phenotypes seen in people with CVID. For example, serum immunoglobulin levels in people with CVID vary greatly. Generally, people can be grouped as follows: no immunoglobulin production, immunoglobulin (Ig) M production only, or both normal IgM and IgG production. Additionally, B cell numbers are also highly variable. 12% of people have no detectable B cells, 12% have reduced B cells, and 54% are within the normal range. In general, people with CVID display higher frequencies of naive B cells and lower frequencies of class-switched memory B cells. Frequencies of other B cell populations, such as IgD memory B cells, transitional B cells, and CD21 B cells, are also affected, and are associated with specific disease features. Although CVID is often thought of as a serum immunoglobulin and B cell-mediated disease, T cells can display abnormal behavior. Affected individuals typically present with low frequencies of CD4, a T-cell marker, and decreased circulation of regulatory T cells and iNKT cell. Notably, approximately 10% of people display CD4 T cell counts lower than 200 cells/mm; this particular phenotype of CVID has been named LOCID (Late Onset Combined Immunodeficiency), and has a poorer prognosis than classical CVID.
Early diagnosis of Severe Combined Immunodeficiency is rare because doctors do not routinely count each type of white blood cell in newborns.
Bone marrow transplant may be possible for Severe Combined Immune Deficiency and other severe immunodeficiences.
Virus-specific T-Lymphocytes (VST) therapy is used for patients who have received hematopoietic stem cell transplantation that has proven to be unsuccessful. It is a treatment that has been effective in preventing and treating viral infections after HSCT. VST therapy uses active donor T-cells that are isolated from alloreactive T-cells which have proven immunity against one or more viruses. Such donor T-cells often cause acute graft-versus-host disease (GVHD), a subject of ongoing investigation. VSTs have been produced primarily by ex-vivo cultures and by the expansion of T-lymphocytes after stimulation with viral antigens. This is carried out by using donor-derived antigen-presenting cells. These new methods have reduced culture time to 10–12 days by using specific cytokines from adult donors or virus-naive cord blood. This treatment is far quicker and with a substantially higher success rate than the 3–6 months it takes to carry out HSCT on a patient diagnosed with a primary immunodeficiency. T-lymphocyte therapies are still in the experimental stage; few are even in clinical trials, none have been FDA approved, and availability in clinical practice may be years or even a decade or more away.
About half of US states are performing screening for SCID in newborns using real-time quantitative PCR to measure the concentration of T-cell receptor excision circles. Wisconsin and Massachusetts (as of February 1, 2009) screen newborns for SCID. Michigan began screening for SCID in October 2011. Some SCID can be detected by sequencing fetal DNA if a known history of the disease exists. Otherwise, SCID is not diagnosed until about six months of age, usually indicated by recurrent infections. The delay in detection is because newborns carry their mother's antibodies for the first few weeks of life and SCID babies look normal.
There is no treatment for MKD. But, the inflammation and the other effects can be reduced to a certain extent.
- IL-1 targeting drugs can be used to reduce the effects of the disorder. Anakinra is antagonist to IL-1 receptors. Anakinra binds the IL-1 receptor, preventing the actions of both IL-1α and IL-1β, and it has been proved to reduce the clinical and biochemical inflammation in MKD. It can effectively decreases the frequency as well as the severity of inflammatory attacks when used on a daily basis. Disadvantages with the usage of this drug are occurrence of painful injection site reaction and as the drug is discontinued in the near future the febrile attacks start. (Examined in a 12-year-old patient).
- Canakinumab is a long acting monoclonal antibody which is directed against IL-1β has shown to be effective in reducing both frequency and severity in patients suffering from mild and severe MKD in case reports and observational case series. It reduces the physiological effects but the biochemical parameter still remain elevated (Galeotti et al. demonstrated that it is more effective than anakinra –considered 6 patients suffering from MKD).
- Anti-TNF therapy might be effective in MKD, but the effect is mostly partial and therapy failure and clinical deterioration have been described frequently in patients on infliximab or etanercept. A beneficial effect of human monoclonal anti-TNFα antibody adalimumab was seen in a small number of MKD patients.
- Most MKD patients are benefited by anti-IL-1 therapy. However, anti-IL-1-resistant disease may also occur. Example. tocilizumab (a humanized monoclonal antibody against the interleukin-6 (IL-6) receptor). This drug is used when the patients are unresponsive towards Anakinra. (Shendi et al. treated a young woman in whom anakinra was ineffective with tocilizumab). It was found that it was effective in reducing the biochemical and clinical inflammation [30].Stoffels et al. observed reduction of frequency and severity of the inflammatory attacks, although after several months of treatment one of these two patients persistently showed mild inflammatory symptoms in the absence of biochemical inflammatory markers.
- A beneficial effect of hematopoietic stem cell transplantation can be used in severe mevalonate kinase deficiency conditions (Improvement of cerebral myelinisation on MRI after allogenic stem cell transplantation was observed in one girl). But, liver transplantation did not influence febrile attacks in this patient.
In terms of diagnosis of "humoral immune deficiency" depends upon the following:
- Measure "serum immunoglobulin levels"
- B cell count
- Family medical history
Treatment for "B cell deficiency"(humoral immune deficiency) depends on the cause, however generally the following applies:
- Treatment of infection(antibiotics)
- Surveillance for malignancies
- Immunoglobulin replacement therapy
IgG deficiency (Selective deficiency of immunoglobulin G) is a form of dysgammaglobulinemia where the proportional levels of the IgG isotype are reduced relative to other immunoglobulin isotypes. IgG deficiency is often found in children as transient hypogammaglobulinemia of infancy (THI), which may occur with or without additional decreases in IgA or IgM.
IgG has four subclasses: IgG, IgG, IgG, and IgG. It is possible to have either a global IgG deficiency, or a deficiency of one or more specific subclasses of IgG. The main clinically relevant form of IgG deficiency is IgG. IgG deficiency is not usually encountered without other concomitant immunoglobulin deficiencies, and IgG deficiency is very common but usually asymptomatic.
IgG1 is present in the bloodstream at a percentage of about 60-70%, IgG2-20-30%, IgG3 about 5-8 %, and IgG4 1-3 %. IgG subclass deficiencies affect only IgG subclasses (usually IgG2 or IgG3), with normal total IgG and IgM immunoglobulins and other components of the immune system being at normal levels. These deficiencies can affect only one subclass or involve an association of two subclasses, such as IgG2 and IgG4. IgG deficiencies are usually not diagnosed until the age of 10. Some of the IgG levels in the blood are undetectable and have a low percentage such as IgG4, which makes it hard to dertermine if a deficiency is actually present. IgG subclass deficiencies are sometimes correlated with bad responses to pneumoccal polyscaccharides, especially IgG2 and or IgG4 deficiency. Some of these deficiencies are also involved with pancreatitis and have been linked to IgG4 levels.
In the world less than 1 in 1.00.000 have HIDS [5]. 200 individuals throughout the world do suffer from MVK.
Isolated primary immunoglobulin M deficiency (or selective IgM immunodeficiency (SIgMD)) is a poorly defined dysgammaglobulinemia characterized by decreased levels of IgM while levels of other immunoglobulins are normal. The immunodeficiency has been associated with some clinical disorders including recurrent infections, atopy, Bloom's syndrome, celiac disease, systemic lupus erythematosus and malignancy, but, surprisingly, SIgMD seems to also occur in asymptomatic individuals. High incidences of recurrent upper respiratory tract infections (77%), asthma (47%) and allergic rhinitis (36%) have also been reported. SIgMD seems to be a particularly rare antibody deficiency with a reported prevalence between 0.03% (general population) and 0.1% (hospitalized patients).
The cause of selective IgM deficiency remains unclear, although various mechanisms have been proposed, such as an increase in regulatory T cell functions, defective T helper cell functions and impaired terminal differentiation of B lymphocytes into IgM-secreting cells among others. It is however puzzling that class switching seems to happen normally (serum levels of other antibodies are normal), while dysfunctioning of IgM synthesis is expected to occur together with abnormalities in other immunoglobulins. Notwithstanding a clear pathogenesis and commonly accepted definition, a cutoff for SIgMD could be the lower limit of the serum IgM reference range, such as 43 mg/dL in adults or even 20 mg/dL.
XLI can be suspected based on clinical findings, although symptoms can take varying amounts of time to become evident, from a few hours after birth, up to a year in milder cases. The diagnosis is usually made by a dermatologist, who also typically formulates the treatment plan (see below). STS enzyme deficiency is confirmed using a clinically available biochemical assay. Carrier detection can be performed in mothers of affected sons using this test (see Genetics, below). Molecular testing for DNA deletions or mutations is also offered, and can be particularly useful in the evaluation of individuals with associated medical conditions (see below). Prenatal diagnosis is possible using either biochemical or molecular tests. However, the use of prenatal diagnosis for genetic conditions that are considered to be generally benign raises serious ethical considerations and requires detailed genetic counseling.
A 2006 study of 279 patients found that of those with symptoms (185, 66%), 95% had suffered an encephalopathic crises usually with following brain damage. Of the persons in the study, 49 children died and the median age of death was 6.6 years. A Kaplan-Meier analysis of the data estimated that about 50% of symptomatic cases would die by the age of 25.
Stress caused by infection, fever or other demands on the body may lead to worsening of the signs and symptoms, with only partial recovery.
The diagnosis of TRAPS may show an increased IgD level in a possibly affected individual, other methods to ascertain a definite finding is via the following:
- Blood test
- Genetic test
- Clinical evaluation
Human findings provide insufficient data for developing treatments due to differences in the patients physiological and metabolic disorders thus, a suitable alternative animal model is essential in obtaining a better understanding of the SR deficiency. In this particular case, researchers used silkworms to identify and characterize mutations relating to SPR activity from an initial purified state created in the larvae of the silkworm. The researchers used genetic and biochemical approaches to demonstrate oral administration of BH and dopamine which increased the survival rates of the silkworm larvae. The results indicate that BH deficiency in silkworms leads to death in response to the lack of dopamine. This shows that silkworms can be useful insect models in additional SR deficiency research and study.
The use of biochemical testing for the detection of carriers is technically demanding and not often used. Biochemical analyses that have been performed on hair bulbs from at risk women have had a small number of both false positive and false negative outcomes. If only a suspected carrier female is available for mutation testing, it may be appropriate to grow her lymphocytes in 6-thioguanine (a purine analogue), which allows only HGPRT-deficient cells to survive. A mutant frequency of 0.5–5.0 × 10 is found in carrier females, while a non-carrier female has a frequency of 1–20 × 10. This frequency is usually diagnostic by itself.
Molecular genetic testing is the most effective method of testing, as HPRT1 is the only gene known to be associated with LNS. Individuals who display the full Lesch–Nyhan phenotype all have mutations in the HPRT1 gene. Sequence analysis of mRNA is available clinically and can be utilized in order to detect HPRT1 mutations in males affected with Lesch–Nyhan syndrome. Techniques such as RT-PCR, multiplex genomic PCR, and sequence analysis (cDNA and genomic DNA), used for the diagnosis of genetic diseases, are performed on a research basis. If RT-PCR tests result in cDNA showing the absence of an entire exon or exons, then multiplex genomic PCR testing is performed. Multiplex genomic PCR testing amplifies the nine exons of the HPRT1 gene as eight PCR products. If the exon in question is deleted, the corresponding band will be missing from the multiplex PCR. However, if the exon is present, the exon is sequenced to identify the mutation, therefore causing exclusion of the exon from cDNA. If no cDNA is created by RT-PCR, then multiplex PCR is performed on the notion that most or all of the gene is obliterated.
The diagnosis of SR deficiency is based on the analysis of the pterins and biogenic amines found in the cerebrospinal fluid (CSF) of the brain. The pterin compound functions as a cofactor in enzyme catalysis and biogenic amines which include adrenaline, dopamine, and serotonin have functions that vary from the control of homeostasis to the management of cognitive tasks. This analysis reveals decreased concentrations of homovanillic acid (HVA), 5-hydroxyindolacetic acid (HIAA), and elevated levels of 7,8-dihydrobiopterin, a compound produced in the synthesis of neurotransmitters. Sepiapterin is not detected by the regularly used methods applied in the investigation of biogenic monoamines metabolites in the cerebrospinal fluid. It must be determined by specialized methods that work by indicating a marked and abnormal increase of sepiapterin in cerebrospinal fluid. Confirmation of the diagnosis occurs by demonstrating high levels of CSF sepiapterin and a marked decrease of SR activity of the fibroblasts along with SPR gene molecular analysis.
The urate to creatinine (breakdown product of creatine phosphate in muscle) concentration ratio in urine is elevated. This is a good indicator of acid overproduction. For children under ten years of age with LNS, a urate to creatinine ratio above two is typically found. Twenty-four-hour urate excretion of more than 20 mg/kg is also typical but is not diagnostic. Hyperuricemia (serum uric acid concentration of >8 mg/dL) is often present but not reliable enough for diagnosis. Activity of the HGPRT enzyme in cells from any type of tissue (e.g., blood, cultured fibroblasts, or lymphoblasts) that is less than 1.5% of normal enzyme activity confirms the diagnosis of Lesch–Nyhan syndrome. Molecular genetic studies of the HPRT gene mutations may confirm diagnosis, and are particularly helpful for subsequent 'carrier testing' in at-risk females such as close family relatives on the female side.
Thromboembolism is a well-described complication of IBD, with a clinical incidence of up to 6% and a three-fold higher risk of disease, and the Factor V Leiden mutation further increases the risk of venous thrombosis. Recent studies describe the co-occurrence between coeliac disease, in which IBD is common in venous thrombosis.