Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Chest x-rays of affected individuals typically reveal nonspecific alveolar opacities. Diagnosis is generally made by surgical or endoscopic biopsy of the lung, revealing the distinctive pathologic finding. The current gold standard of PAP diagnosis involves histopathological examination of alveolar specimens obtained from bronchoalveolar lavage and transbronchial lung biopsy.
Microscopically, the distal air spaces are filled with a granular, eosinophilic material that is positive with the PAS stain and the PAS diastase stain. The main histomorphologic differential diagnosis is pulmonary edema, which does not have dense bodies.
An ELISA to measure antibodies against GM-CSF has been validated for routine clinical diagnosis of autoimmune PAP.
PAP patients, families, and caregivers are encouraged to join the NIH Rare Lung Diseases Consortium Contact Registry. This is a privacy protected site that provides up-to-date information for individuals interested in the latest scientific news, trials, and treatments related to rare lung diseases.
Professional divers are screened for risk factors during initial and periodical medical examination for fitness to dive. In most cases recreational divers are not medically screened, but are required to provide a medical statement before acceptance for training in which the most common and easy to identify risk factors must be declared. If these factors are declared, the diver may be required to be examined by a medical practitioner, and may be disqualified from diving if the conditions indicate.
Asthma, Marfan syndrome, and COPD pose a very high risk of pneumothorax. In some countries these may be considered absolute contraindications, while in others the severity may be taken into consideration. Asthmatics with a mild and well controlled condition may be permitted to dive under restricted circumstances.
A significant part of entry level diver training is focused on understanding the risks and procedural avoidance of barotrauma. Professional divers and recreational divers with rescue training are trained in the basic skills of recognizing and first aid management of diving barotrauma.
If heart disease and lung disease have been excluded, a ventilation/perfusion scan is performed to rule out CTEPH. If unmatched perfusion defects are found, further evaluation by CT pulmonary angiography, right heart catheterization, and selective pulmonary angiography is performed.
If the echocardiogram is compatible with a diagnosis of pulmonary hypertension, common causes of pulmonary hypertension (left heart disease and lung disease) are considered and further tests are performed accordingly. These tests generally include electrocardiography (ECG), pulmonary function tests including lung diffusion capacity for carbon monoxide and arterial blood gas measurements, X-rays of the chest and high-resolution computed tomography (CT) scanning.
Following diagnosis, mean survival of patients with PPH is 15 months. The survival of those with cirrhosis is sharply curtailed by PPH but can be significantly extended by both medical therapy and liver transplantation, provided the patient remains eligible.
Eligibility for transplantation is generally related to mean pulmonary artery pressure (PAP). Given the fear that those PPH patients with high PAP will suffer right heart failure following the stress of post-transplant reperfusion or in the immediate perioperative period, patients are typically risk-stratified based on mean PAP. Indeed, the operation-related mortality rate is greater than 50% when pre-operative mean PAP values lie between 35 and 50 mm Hg; if mean PAP exceeds 40-45, transplantation is associated with a perioperative mortality of 70-80% (in those cases without preoperative medical therapy). Patients, then, are considered to have a high risk of perioperative death once their mean PAP exceeds 35 mm_Hg.
Survival is best inferred from published institutional experiences. At one institution, without treatment, 1-year survival was 46% and 5-year survival was 14%. With medical therapy, 1-year survival was 88% and 5-year survival was 55%. Survival at 5 years with medical therapy followed by liver transplantation was 67%. At another institution, of the 67 patients with PPH from 1652 total cirrhotics evaluated for transplant, half (34) were placed on the waiting list. Of these, 16 (48%) were transplanted at a time when 25% of all patients who underwent full evaluation received new livers, meaning the diagnosis of PPH made a patient twice as likely to be transplanted, once on the waiting list. Of those listed for transplant with PPH, 11 (33%) were eventually removed because of PPH, and 5 (15%) died on the waitlist. Of the 16 transplanted patients with PPH, 11 (69%) survived for more than a year after transplant, at a time when overall one-year survival in that center was 86.4%. The three year post-transplant survival for patients with PPH was 62.5% when it was 81.02% overall at this institution.
The diagnosis of portopulmonary hypertension is based on hemodynamic criteria:
1. . Portal hypertension and/or liver disease (clinical diagnosis—ascites/varices/splenomegaly)
2. . Mean pulmonary artery pressure—MPAP > 25 mmHg at rest
3. . Pulmonary vascular resistance—PVR > 240 dynes s cm−5
4. . Pulmonary artery occlusion pressure— PAOP 12 mmHg where TPG = MPAP − PAOP.
The diagnosis is usually first suggested by a transthoracic echocardiogram, part of the standard pre-transplantation work-up. Echocardiogram estimated pulmonary artery systolic pressures of 40 to 50 mm Hg are used as a screening cutoff for PPH diagnosis, with a sensitivity of 100% and a specificity as high as 96%. The negative predictive value of this method is 100% but the positive predictive value is 60%. Thereafter, these patients are referred for pulmonary artery catheterization.
The limitations of echocardiography are related to the derivative nature of non-invasive PAP estimation. The measurement of PAP by echocardiogram is made using a simplified Bernoulli equation. High cardiac index and pulmonary capillary wedge pressures, however, may lead to false positives by this standard. By one institution’s evaluation, the correlation between estimated systolic PAP and directly measured PAP was poor, 0.49. For these reasons, right heart catheterization is needed to confirm the diagnosis.
Formal criteria for diagnosis of OHS are:
- Body mass index over 30 kg/m (a measure of obesity, obtained by taking one's weight in kilograms and dividing it by one's height in meters squared)
- Arterial carbon dioxide level over 45 mmHg or 6.0 kPa as determined by arterial blood gas measurement
- No alternative explanation for hypoventilation, such as use of narcotics, severe obstructive or interstitial lung disease, severe chest wall disorders such as kyphoscoliosis, severe hypothyroidism (underactive thyroid), neuromuscular disease or congenital central hypoventilation syndrome
If OHS is suspected, various tests are required for its confirmation. The most important initial test is the demonstration of elevated carbon dioxide in the blood. This requires an arterial blood gas determination, which involves taking a blood sample from an artery, usually the radial artery. Given that it would be complicated to perform this test on every patient with sleep-related breathing problems, some suggest that measuring bicarbonate levels in normal (venous) blood would be a reasonable screening test. If this is elevated (27 mmol/l or higher), blood gasses should be measured.
To distinguish various subtypes, polysomnography is required. This usually requires brief admission to a hospital with a specialized sleep medicine department where a number of different measurements are conducted while the subject is asleep; this includes electroencephalography (electronic registration of electrical activity in the brain), electrocardiography (same for electrical activity in the heart), pulse oximetry (measurement of oxygen levels) and often other modalities. Blood tests are also recommended for the identification of hypothyroidism and polycythemia.
To distinguish between OHS and various other lung diseases that can cause similar symptoms, medical imaging of the lungs (such as a chest X-ray or CT/CAT scan), spirometry, electrocardiography and echocardiography may be performed. Echo- and electrocardiography may also show strain on the right side of the heart caused by OHS, and spirometry may show a restrictive pattern related to obesity.
Chest radiographs (X-ray photographs) often show a pulmonary infection before physical signs of atypical pneumonia are observable at all.
This is occult pneumonia. In general, occult pneumonia is rather often present in patients with pneumonia and can also be caused by "Streptococcus pneumoniae", as the decrease of occult pneumonia after vaccination of children with a pneumococcal vaccine suggests.
Infiltration commonly begins in the perihilar region (where the bronchus begins) and spreads in a wedge- or fan-shaped fashion toward the periphery of the lung field. The process most often involves the lower lobe, but may affect any lobe or combination of lobes.
In people with stable OHS, the most important treatment is weight loss—by diet, through exercise, with medication, or sometimes weight loss surgery (bariatric surgery). This has been shown to improve the symptoms of OHS and resolution of the high carbon dioxide levels. Weight loss may take a long time and is not always successful. Bariatric surgery is avoided if possible, given the high rate of complications, but may be considered if other treatment modalities are ineffective in improving oxygen levels and symptoms. If the symptoms are significant, nighttime positive airway pressure (PAP) treatment is tried; this involves the use of a machine to assist with breathing. PAP exists in various forms, and the ideal strategy is uncertain. Some medications have been tried to stimulate breathing or correct underlying abnormalities; their benefit is again uncertain.
While many people with obesity hypoventilation syndrome are cared for on an outpatient basis, some deteriorate suddenly and when admitted to the hospital may show severe abnormalities such as markedly deranged blood acidity (pH<7.25) or depressed level of consciousness due to very high carbon dioxide levels. On occasions, admission to an intensive care unit with intubation and mechanical ventilation is necessary. Otherwise, "bi-level" positive airway pressure (see the next section) is commonly used to stabilize the patient, followed by conventional treatment.
Mycoplasma is found more often in younger than in older people.
Older people are more often infected by Legionella.
In renal compensation, plasma bicarbonate rises 3.5 mEq/L for each increase of 10 mm Hg in "Pa"CO. The expected change in serum bicarbonate concentration in respiratory acidosis can be estimated as follows:
- Acute respiratory acidosis: HCO increases 1 mEq/L for each 10 mm Hg rise in "Pa"CO.
- Chronic respiratory acidosis: HCO rises 3.5 mEq/L for each 10 mm Hg rise in "Pa"CO.
The expected change in pH with respiratory acidosis can be estimated with the following equations:
- Acute respiratory acidosis: Change in pH = 0.008 X (40 − "Pa"CO)
- Chronic respiratory acidosis: Change in pH = 0.003 X (40 − "Pa"CO)
Respiratory acidosis does not have a great effect on electrolyte levels. Some small effects occur on calcium and potassium levels. Acidosis decreases binding of calcium to albumin and tends to increase serum ionized calcium levels. In addition, acidemia causes an extracellular shift of potassium, but respiratory acidosis rarely causes clinically significant hyperkalemia.
Chronic respiratory acidosis may be secondary to many disorders, including COPD. Hypoventilation in COPD involves multiple mechanisms, including decreased responsiveness to hypoxia and hypercapnia, increased ventilation-perfusion mismatch leading to increased dead space ventilation, and decreased diaphragm function secondary to fatigue and hyperinflation.
Chronic respiratory acidosis also may be secondary to obesity hypoventilation syndrome (i.e., Pickwickian syndrome), neuromuscular disorders such as amyotrophic lateral sclerosis, and severe restrictive ventilatory defects as observed in interstitial lung disease and thoracic deformities.
Lung diseases that primarily cause abnormality in alveolar gas exchange usually do not cause hypoventilation but tend to cause stimulation of ventilation and hypocapnia secondary to hypoxia. Hypercapnia only occurs if severe disease or respiratory muscle fatigue occurs.
Secondary Raynaud's is managed primarily by treating the underlying cause and as primary Raynaud's, avoiding triggers, such as cold, emotional and environmental stress, vibrations and repetitive motions, and avoiding smoking (including passive smoking) and sympathomimetic drugs.
It is important to distinguish Raynaud's "disease" (primary Raynaud's) from "phenomenon" (secondary Raynaud's). Looking for signs of arthritis or vasculitis as well as a number of laboratory tests may separate them. If suspected to be secondary to systemic sclerosis, one tool which may help aid in the prediction of systemic sclerosis is thermography.
A careful medical history will often reveal whether the condition is primary or secondary. Once this has been established, an examination is largely to identify or exclude possible secondary causes.
- Digital artery pressure: pressures are measured in the arteries of the fingers before and after the hands have been cooled. A decrease of at least 15 mmHg is diagnostic (positive).
- Doppler ultrasound: to assess blood flow.
- Full blood count: this may reveal a normocytic anaemia suggesting the anaemia of chronic disease or renal failure.
- Blood test for urea and electrolytes: this may reveal renal impairment.
- Thyroid function tests: this may reveal hypothyroidism.
- An autoantibody screen, tests for rheumatoid factor, Erythrocyte sedimentation rate, and C-reactive protein, which may reveal specific causative illnesses or a generalised inflammatory process.
- Nail fold vasculature: this can be examined under the microscope.
To aid in the diagnosis of Raynaud's phenomenon, multiple sets of diagnostic criteria have been proposed. Table 1 below provides a summary of these various diagnostic criteria.
Recently, International Consensus Criteria were developed for the diagnosis of primary Raynaud's phenomenon by a panel of multiple experts in the fields of rheumatology and dermatology.
The diagnosis is based on microscopic criteria. Ideally, phase-contrast microscopy is used with a magnification of 400x (high-power field). For scoring purposes, along with relative number of leucocytes, percentage of toxic leucocytes, background flora and proportion of epitheliocytes, lactobacillary grade must be evaluated:
- grade I
- grade IIa
- grade IIb
- grade III
The "AV score" is calculated according to what is described in the table.
- AV score <3: no signs of AV
- AV score 3 or 4: light AV
- AV score 5 or 6: moderate AV
- AV score ≥6: severe AV.
pH measurement alone is not enough for the diagnosis.
Other than identifying and treating any underlying conditions in secondary livedo, idiopathic livedo reticularis may improve with warming the area.
Aerobic vaginitis has been associated with several gynecological and obstetrical complications, including:
- Premature rupture of membranes
- Preterm labour
- Ascending chorioamnionitis.
- Increased risk to acquire sexually transmitted infections (including HIV)
- Abnormal Pap test results
Suggested diagnostic criteria for cryoglobulinemic disease fall into the following obligatory and additional categories:
- Obligatory criteria: 1) cold sensitivity; 2) cutaneous symptoms (i.e. urticaria, purpura, Raynaud phenomenon, ulceration/necrosis/gangrene, and/or livedo reticularis); 3) arterial and/or venous thrombotic events; fever; 4) arthralgia/myalgia; 5) neuritis in >1 site; and 6) renal disorder.
- Additional criteria: 1) typical biopsy findings at site(s) of involvement and 2) angiogram evidence of occlusion in one or more small to medium sized arteries.
The diagnosis of secondary cryofibrinogenemia also requires evidence for the cited infectious, malignant, premalignant vasculitis, and autoimmune disorders while the diagnosis of primary cryofibriongenemia requires a lack of evidence for 1) the cited associated disorders, 2) other vascular occlusive diseases, and 3) cryoglobulinemia.
While the prognosis of cryofibrinoginemic disease varies greatly depending on its severity as well as the severity of its associated disorders, satisfactory clinical outcomes are reported in 50-80% of patients with primary or secondary disease treated with corticosteroid and/or immunosuppressive regimens. However, relapses occur within the first 6 months after stopping or decreasing therapy in 40-76% of cases. Sepsis resulting from infection of necrotic tissue is the most common threat to life in primary disease whereas the associated disorder is a critical determinant of prognosis in secondary disease.
In terms of diagnosis of "humoral immune deficiency" depends upon the following:
- Measure "serum immunoglobulin levels"
- B cell count
- Family medical history
After age 30 it was thought DES Daughters no longer were at risk for the disease, but as they age into their 40s and 50, cases continue to be reported. Researchers are now watching for a possible spike of CCA cases in post-menopausal DES Daughters, since this is when this cancer is normally diagnosed.
According to the Centers for Disease Control and Prevention (CDC), DES Daughters should have a special pap/pelvic exam every year because of their lifelong risk for clear-cell adenocarcinoma. The screening is similar to a routine exam but is more comprehensive and should be done every year for DES Daughters even after a hysterectomy. Although the cervix was removed in surgery, the vagina remains, and should be examined for the possible development of CCA. Updated screening guidelines in 2012 allow some women to skip annual Paps. But in developing the guidelines, the United States Preventative Services Task Force (USPSTF) specifically spelled out that the guidelines do NOT apply to DES Daughters, who should continue having annual screenings.
The diagnosis of SSC requires the exclusion of secondary causes of sclerosing cholangitis and recognition of associated conditions that may potentially imitate its classic cholangiographic features. It is morphologically similar to primary sclerosing cholangitis (PSC) but originates from a known pathological process. Its clinical and cholangiographic features may mimic PSC, yet its natural history may be more favorable if recognition is prompt and appropriate therapy is introduced. Sclerosing cholangitis in critically ill patients, however, is associated with rapid disease progression and poor outcome. Serologic testing, radiological imaging and histological analysis can help diagnose SSC.
Treatment for "B cell deficiency"(humoral immune deficiency) depends on the cause, however generally the following applies:
- Treatment of infection(antibiotics)
- Surveillance for malignancies
- Immunoglobulin replacement therapy