Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
For sinusitis lasting more than 12 weeks a CT scan is recommended. On a CT scan, acute sinus secretions have a radiodensity of 10 to 25 Hounsfield units (HU), but in a more chronic state they become thickened, with a radiodensity of 30 to 60 HU.
Nasal endoscopy and clinical symptoms are also used to make a positive diagnosis. A tissue sample for histology and cultures can also be collected and tested. Allergic fungal sinusitis (AFS) is often seen in people with asthma and nasal polyps. In rare cases, sinusoscopy may be made.
Nasal endoscopy involves inserting a flexible fiber-optic tube with a light and camera at its tip into the nose to examine the nasal passages and sinuses. This is generally a completely painless (although uncomfortable) procedure which takes between five and ten minutes to complete.
Health care providers distinguish bacterial and viral sinusitis by watchful waiting. If a person has had sinusitis for fewer than 10 days without the symptoms becoming worse, then the infection is presumed to be viral. When symptoms last more than 10 days or get worse in that time, then the infection is considered bacterial sinusitis. Imaging by either X-ray, CT or MRI is generally not recommended unless complications develop. Pain caused by sinusitis is sometimes confused for pain caused by pulpitis (toothache) of the maxillary teeth, and vice versa. Classically, the increased pain when tilting the head forwards separates sinusitis from pulpitis.
There is low or very-low quality evidence that probiotics may be better than placebo in preventing acute URTIs. Vaccination against influenza viruses, adenoviruses, measles, rubella, "Streptococcus pneumoniae", "Haemophilus influenzae", diphtheria, "Bacillus anthracis", and "Bordetella pertussis" may prevent them from infecting the URT or reduce the severity of the infection.
The Centers for Disease Control describe protocol for treating sinusitis while at the same time discouraging overuse of antibiotics:
- Target likely organisms with first-line drugs: Amoxicillin, Amoxicillin/Clavulanate
- Use shortest effective course: Should see improvement in 2–3 days. Continue treatment for 7 days after symptoms improve or resolve (usually a 10–14 day course).
- Consider imaging studies in recurrent or unclear cases: some sinus involvement is frequent early in the course of uncomplicated viral URI
Treatment comprises symptomatic support usually via analgesics for headache, sore throat and muscle aches. Moderate exercise in sedentary subjects with naturally acquired URTI probably does not alter the overall severity and duration of the illness. No randomized trials have been conducted to ascertain benefits of increasing fluid intake.
Spirometry is recommended to aid in diagnosis and management. It is the single best test for asthma. If the FEV1 measured by this technique improves more than 12% and increases by at least 200 milliliters following administration of a bronchodilator such as salbutamol, this is supportive of the diagnosis. It however may be normal in those with a history of mild asthma, not currently acting up. As caffeine is a bronchodilator in people with asthma, the use of caffeine before a lung function test may interfere with the results. Single-breath diffusing capacity can help differentiate asthma from COPD. It is reasonable to perform spirometry every one or two years to follow how well a person's asthma is controlled.
The methacholine challenge involves the inhalation of increasing concentrations of a substance that causes airway narrowing in those predisposed. If negative it means that a person does not have asthma; if positive, however, it is not specific for the disease.
Other supportive evidence includes: a ≥20% difference in peak expiratory flow rate on at least three days in a week for at least two weeks, a ≥20% improvement of peak flow following treatment with either salbutamol, inhaled corticosteroids or prednisone, or a ≥20% decrease in peak flow following exposure to a trigger. Testing peak expiratory flow is more variable than spirometry, however, and thus not recommended for routine diagnosis. It may be useful for daily self-monitoring in those with moderate to severe disease and for checking the effectiveness of new medications. It may also be helpful in guiding treatment in those with acute exacerbations.
The treatment of RM involves withdrawal of the offending nasal spray or oral medication. Both a "cold turkey" and a "weaning" approach can be used. Cold turkey is the most effective treatment method, as it directly removes the cause of the condition, yet the time period between the discontinuation of the drug and the relief of symptoms may be too long and uncomfortable for some individuals (particularly when trying to go to sleep when they are unable to breathe through their nose).
A benefit of the gradual “weaning” approach is that it helps preserve normal nasal airflow during the withdrawal process. United States Patent Number 5,988,870 was issued for a method and apparatus used to facilitate the precise titration and gradual withdrawal of decongestant nasal sprays containing addictive compounds. The system is sold under the brand name Rhinostat.
The use of over-the-counter (OTC) saline nasal sprays may help open the nose without causing RM if the spray does not contain a decongestant. Symptoms of congestion and runny nose can often be treated with corticosteroid nasal sprays under the supervision of a physician. For very severe cases, oral steroids or nasal surgery may be necessary.
For RM caused by topical decongestants, there are anecdotal reports of persons having success by withdrawing treatment from one nostril at a time.
A study has shown that the anti-infective agent benzalkonium chloride, which is frequently added to topical nasal sprays as a preservative, aggravates the condition by further increasing the rebound swelling.
Common issues that lead to overuse of topical decongestants:
- Deviated septum
- Upper respiratory tract infection
- Vasomotor rhinitis
- Cocaine use and other stimulant abuse
- Pregnancy (these products are not considered safe for pregnancy)
- Chronic rhinosinusitis
- Hypertrophy of the inferior turbinates
The most effective diagnostic strategy is to perform laryngoscopy during an episode, at which time abnormal movement of the cords, if present, can be observed. If the endoscopy is not performed during an episode, it is likely that the vocal folds will be moving normally, a 'false negative' finding.
Spirometry may also be useful to establish the diagnosis of VCD when performed during a crisis or after a nasal provocation test. With spirometry, just as the expiratory loop may show flattening or concavity when expiration is affected in asthma, so may the Inspiratory loop show truncation or flattening in VCD. Of course, testing may well be negative when symptoms are absent.
The symptoms of VCD are often inaccurately attributed to asthma, which in turn results in the unnecessary and futile intake of corticosteroids, bronchodilators and leukotriene modifiers, although there are instances of comorbidity of asthma and VCD.
The differential diagnosis for vocal cord dysfunction includes vocal fold swelling from allergy, asthma, or some obstruction of the vocal folds or throat. Anyone suspected of this condition should be evaluated and the vocal folds (voice box) visualized. In individuals who experience a persistent difficulty with inhaling, consideration should be given to a neurological cause such as brain stem compression, cerebral palsy, etc.
The main difference between VCD and asthma is the audible stridor or wheezing that occurs at different stages of the breath cycle: VCD usually causes stridor on the inhalation, while asthma results in wheezing during exhalation. Patients with asthma usually respond to the usual medication and see their symptoms resolve. Clinical measures that can be done to differentiate VCD from asthma include:
- rhinolaryngoscopy: A patient with asthma will have normal vocal cord movement, while one with VCD will display vocal cord abduction during inhalation
- spirometry: A change in the measure following the administration of a bronchodilator is suggestive of asthma rather than VCD
- chest radiography: The presence of hyperinflation and peribronchial thickening are indicative of asthma, as patients with VCD will show normal results.
Other disorders can mimic the appearance of nasal polyps and should be considered if a mass is seen on exam. Examples include encephalocele, glioma, inverted papilloma, and cancer. Early biopsy is recommended for unilateral nasal polyps to rule out more serious conditions such as cancer, inverted papilloma, or fungal sinusitis.
No consensus criteria exist for the diagnosis of ENS; it is typically diagnosed by ruling out other conditions, with ENS remaining the likely diagnosis if the signs and symptoms are present. A "cotton test" has been proposed, in which moist cotton is held where a turbinate should be, to see if it provides relief; while this has not been validated nor is it widely accepted, it may be useful to identify which people may benefit from surgery.
As of 2015, protocols for using rhinomanometry to diagnose ENS and measure response to surgery were under development, as was a standardized clinical instrument (a well defined and validated questionnaire) to obtain more useful reporting of symptoms.
Nasal polyps can be seen on physical examination inside of the nose and are often detected during the evaluation of symptoms. On examination, a polyp will appear as a visible mass in the nostril. Some polyps may be seen with anterior rhinoscopy (looking in the nose with a nasal speculum and a light), but frequently, they are farther back in the nose and must be seen by nasal endoscopy. Nasal endoscopy involves passing a small, rigid camera with a light source into the nose. An image is projected onto a screen in the office so the doctor can examine the nasal passages and sinuses in greater detail. The procedure is not generally painful, but the patient can be given a spray decongestant and local anesthetic to minimize discomfort.
Attempts have been made to develop scoring systems to determine the severity of nasal polyps. Proposed staging systems take into account the extent of polyps seen on endoscopic exam and the number of sinuses affected on CT imaging. This staging system is only partially validated, but in the future, may be useful for communicating the severity of disease, assessing treatment response, and planning treatment.
Studies have shown that sinusitis is found in about 60% of the cases on the fourth day after the manifestation of sinus. Moreover, patient may be afflicted with an acute sinus disease if OAC is not treated promptly upon detecting clear signs of sinusitis. So, early diagnosis of OAC must be conducted in order to prevent OAF from setting in.
Spontaneous healing of small perforation is expected to begin about 48 hours after tooth extraction and it remains possible during the following two weeks. Patient must consult the dentist as early as possible should a large defect of more than 7mm in diameter or a dogged opening that requires closure is discovered so that appropriate and suitable treatment can be swiftly arranged or referral to Oral Maxillofacial Surgery (OMFS) be made at the local hospital, if required.
A comprehensive preoperative radiographic evaluation is a must as the risk of OAC can increase due to one or more of the following situations :-
- Close relationship between the roots of the maxillary posterior teeth and the sinus floor
- Increased divergence or dilaceration of the roots of the tooth
- Marked pneumatization of the sinus leading to a larger size
- Peri-radicular lesions involving teeth or roots in close association with the sinus floor
Hence, in such cases:
- Avoid using too much of apical pressure during tooth extraction
- Perform surgical extraction with roots sectioning
- Consider referral to OMFS at local hospital
Medications may be needed as an adjunct to assist the closure of the defect. Antibiotics can help control or prevent any sinus infections. Preoperative nasal decongestants usage can reduce any existing sinus inflammation which will aid surgical manipulation of the mucosa over the bone.
Initial treatment is similar to atrophic rhinitis, namely keeping the nasal mucosa moist with saline or oil-based lubricants and treating pain and infection as they arise; adding menthol to lubricants may be helpful in ENS, as may be use of a cool mist humidifer at home. For people with anxiety, depression, or who are obsessed with the feeling that they can't breathe, psychiatric or psychological care may be helpful.
In some people, surgery to restore missing or reduced turbinates may be beneficial.
A 2015 meta-analysis identified 128 people treated with surgery from eight studies that were useful to pool, with an age range of 18 to 64, most of whom had been suffering ENS symptoms for many years. The most common surgical approach was creating a pocket under the mucosa and implanting material - the amount and location were based on the judgement of the surgeon. In about half the cases a filler such as noncellular dermis, a medical-grade porous high-density polyethylene, or silastic was used and in about 40% cartilage taken from the person or from a cow was used. In a few cases hyaluronic acid was injected and in a few others tricalcium phosphate was used. There were no complications caused by the surgery, although one person was over-corrected and developed chronic rhinosinusitis and two people were under-corrected. The hyaluronic acid was completely resorbed in the three people who received it at the one year follow up, and in six people some of the implant came out, but this did not affect the result as enough remained. About 21% of the people had no or marginal improvement but the rest reported significant relief of their symptoms. Since none of the studies used placebo or blinding there may be a strong placebo effect or bias in reporting.
Imaging studies are performed before surgery or biopsy to preclude an intracranial connection. Images usually show a sharply circumscribed but expansile mass. It may be difficult to exclude the intracranial connection if the defect is small whether employing computed tomography or magnetic resonnance.
The most common missed lesion is within the nasal cavity, where a fibrosed nasal polyp may be considered. However, it does not have glial tissue. Further, a polyp usually has mucoserous glands. The lesion is frequently misintrepreted as scar in the subcutaneous tissues, but scar in a <2 year old child would be uncommon. Special stains are frequently required to highlight the diagnosis.
NSAID or nonsteroidal anti-inflammatory drug hypersensitivity reactions encompasses a broad range of allergic or allergic-like symptoms that occur within minutes to hours after ingesting aspirin or other NSAID nonsteroidal anti-inflammatory drugs. Hypersensitivity drug reactions differ from drug toxicity reactions in that drug toxicity reactions result from the pharmacological action of a drug, are dose-related, and can occur in any treated individual (see nonsteroidal anti-inflammatory drugs section on adverse reactions for NSAID-induced toxic reactions); hypersensitivity reactions are idiosyncratic reactions to a drug. Although the term NSAID was introduced to signal a comparatively low risk of adverse effects, NSAIDs do evoke a broad range of hypersensitivity syndromes. These syndromes have recently been classified by the European Academy of Allergy and Clinical Immunology Task Force on NSAIDs Hypersensitivity. The classification organizes the hypersensitivity reactions to NSAIDs into the following five categories:
- 1) NSAIDs-exacerbated respiratory disease (NERD) is an acute (immediate to several hours) exacerbation of bronchoconstriction and other symptoms of asthma (see aspirin-induced asthma) in individuals with a history of asthma and/or nasal congestion, rhinorrhea or other symptoms of rhinitis and sinusitis in individuals with a history of rhinosinusitis after ingestion of various NSAIDs, particularly those that act by inhibiting the COX-1 enzyme. NERD does not appear to be due to a true allergic reaction to NSAIDs but rather at least in part to the more direct effects of these drugs to promote the production and/or release of certain mediators of allergy. That is, inhibition of cellular COX activity deprives tissues of its anti-inflammatory product(s), particularly prostaglandin E2 while concurrently shuttling its substrate, arachidonic acid, into other metabolizing enzymes, particularly 5-lipoxygenase (ALOX5) to overproduce pro-inflammatory leukotriene and 5-Hydroxyicosatetraenoic acid metabolites and 15-lipoxygenase (ALOX15) to overproduce pro-inflammatory 15-Hydroxyicosatetraenoic acid metabolites, including eoxins; the condition is also associated with a reduction in the anti-inflammatory metabolite, lipoxin A4, and increases in certain pro-allergic chemokines such as eotaxin-2 and CCL7.
- 2) NSAIDs-exacerbated cutaneous disease (NECD) is an acute exacerbation of wheals and/or angioedema in individuals with a history of chronic urticaria. NECD also appears due to the non-allergic action of NSAIDs in inhibiting the production of COX anti-inflammatory metabolites while promoting the production 5-lipoxygenase and 15-lipoxygenase pro-inflammatory metabolites and the overproduction of certain pro-allergic chemokines, e.g. eotaxin-1, eotaxin-2, RANTES, and interleukin-5.
- 3) NSAIDs-induced urticarial disease (NEUD) is the acute development of wheals and/or angioedema in individuals with no history of chronic NSAIDs-induced urticaria or related diseases. The mechanism behind NEUD is unknown but may be due to the non-allergic action of NSAIDs in promoting the production and/or release of allergy mediators.
- 4) Single NSAID-induced urticarial/angioedema or anaphylaxis (SNIUAA) is the acute development of urticarial, angioedema, or anaphylaxis in response to a single type of NSAID and/or a single group of NSAIDs with a similar structure but not to other structurally unrelated NSAIDs in individuals with no history of underlying relevant chronic diseases. SNIUAA is due to a true IgE-mediated allergy reaction.
- 5 Single NSAID-induced delayed reactions (SNIDR) are a set of delayed onset (usually more than 24 hour) reactions to NSAIDs. SNIDR are most commonly skin reactions that may be relatively mild moderately severe such as maculopapular rash, fixed drug eruptions, photosensitivity reactions, delayed urticaria, and contact dermatitis or extremely severe such as the DRESS syndrome, acute generalized exanthematous pustulosis, the Stevens–Johnson syndrome, and toxic epidermal necrolysis (also termed Lyell's syndrome). SNIDR result from the drug-specific stimulation of CD4+ T lymphocytes and CD8+ cytotoxic T cells to elicit a delayed type hypersensitivity reaction.
Drugs in systemic circulation have a certain concentration in the blood, which serves as a surrogate marker for how much drug will be delivered throughout the body (how much drug the rest of the body will "see"). There exists a minimum concentration of drug within the blood that will give rise to the intended therapeutic effect (minimum effective concentration, MEC), as well as a minimum concentration of drug that will give rise to an unintended adverse drug event (minimum toxic concentration, MTC). The difference between these two values is generally referred to as the therapeutic window. Different drugs have different therapeutic windows, and different people will have different MECs and MTCs for a given drug. If someone has a very low MTC for a drug, they are likely to experience adverse effects at drug concentrations lower than what it would take to produce the same adverse effects in the general populace; thus, the individual will experience significant toxicity at a dose that is otherwise considered "normal" for the average person. This individual will be considered "intolerant" to that drug.
There are a variety of factors that can affect the MTC, which is often the subject of clinical pharmacokinetics. Variations in MTC can occur at any point in the ADME (absorption, distribution, metabolism, and excretion) process. For example, a patient could possess a genetic defect in a drug metabolizing enzyme in the cytochrome P450 superfamily. While most individuals will possess the effective metabolizing machinery, a person with a defect will have a difficult time trying to clear the drug from their system. Thus, the drug will accumulate within the blood to higher-than-expected concentrations, reaching a MTC at a dose that would otherwise be considered normal for the average person. In other words, in a person that is intolerant to a medication, it is possible for a dose of 10 mg to "feel" like a dose of 100 mg, resulting in an overdose—a "normal" dose can be a "toxic" dose in these individuals, leading to clinically significant effects.
There is also an aspect of drug intolerance that is subjective. Just as different people have different pain tolerances, so too do people have different tolerances for dealing with the adverse effects from their medications. For example, while opioid-induced constipation may be tolerable to some individuals, other people may stop taking an opioid due to the unpleasantness of the constipation even if it brings them significant pain relief.
Drug intolerance or drug sensitivity refers to an inability to tolerate the adverse effects of a medication, generally at therapeutic or subtherapeutic doses. Conversely, a patient is said to be "tolerating" a drug when they can tolerate its adverse effects. It is not to be confused with a drug allergy, which is a form of drug intolerance, but requires an immune-mediated component. It is also not to be confused with drug tolerance ("drug resistance," or tachyphylaxis) which refers to a "lack" of adverse effects even at higher than average doses. Some instances of drug intolerance are known to result from genetic variations in drug metabolism.
Young's syndrome, also known as azoospermia sinopulmonary infections, sinusitis-infertility syndrome and Barry-Perkins-Young syndrome, is a rare condition that encompasses a combination of syndromes such as bronchiectasis, rhinosinusitis and reduced fertility. In individuals with this syndrome, the functioning of the lungs is usually normal but the mucus is abnormally viscous. The reduced fertility (azoospermia) is due to functional obstruction of sperm transport down the genital tract at the epididymis where the sperms are found in viscous, lipid-rich fluid. The syndrome was named after Donald Young, the urologist who first made observations of the clinical signs of the syndrome in 1972. There have been several studies undertaken suggesting that contact with mercury might cause the syndrome.
A variant of Young's syndrome has been observed in an individual, showing slightly different signs and symptoms.
Infants may develop respiratory symptoms as a result of exposure to a specific type of fungal mold, called Penicillium. Signs that an infant may have mold-related respiratory problems include (but are not limited to) a persistent cough and/or wheeze. Increased exposure increases the probability of developing respiratory symptoms during their first year of life. Studies have shown that a correlation exists between the probability of developing asthma and increased exposure to "Penicillium". The levels are deemed ‘no mold’ to ‘low level’ , from ‘low’ to ‘intermediate’ , and from ‘intermediate’ to ‘high’.
Mold exposures have a variety of health effects depending on the person. Some people are more sensitive to mold than others. Exposure to mold can cause a number of health issues such as; throat irritation, nasal stuffiness, eye irritation, cough and wheezing, as well as skin irritation in some cases. Exposure to mold may also cause heightened sensitivity depending on the time and nature of exposure. People at higher risk for mold allergies are people with chronic lung illnesses, which will result in more severe reactions when exposed to mold.
There has been sufficient evidence that damp indoor environments are correlated with upper respiratory tract symptoms such as coughing, and wheezing in people with asthma.
Symptoms of mold exposure can include:
- Nasal and sinus congestion, runny nose
- Respiratory problems, such as wheezing and difficulty breathing, chest tightness
- Cough
- Throat irritation
- Sneezing / Sneezing fits