Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
Ancillary testing is not usually necessary to make the diagnosis. Fluorescein angiography reveals an abrupt diminution in dye at the site of the obstruction. Visual field testing can confirm the extent of visual loss.
Quick determination of the cause may lead to urgent measures to save the eye and life of the patient. High clinical suspicion should be kept for painless vision loss in patients with atherosclerosis, deep venous thrombosis, atrial fibrillation, pulmonary thromboembolism or other previous embolic episodes. Those caused by a carotid artery embolism or occlusion have the potential for further stroke by detachment of embolus and migration to an end-artery of the brain. Hence, proper steps to prevent such an eventuality need to be taken.
Retinal arterial occlusion is an ophthalmic emergency, and prompt treatment is essential. Completely anoxic retina in animal models causes irreversible damage in about 90 minutes. Nonspecific methods to increase blood flow and dislodge emboli include digital massage, 500 mg IV acetazolamide and 100 mg IV methylprednisolone (for possible arteritis). Additional measures include paracentesis of aqueous humor to decrease IOP acutely. An ESR should be drawn to detect possible giant cell arteritis. Improvement can be determined by visual acuity, visual field testing, and by ophthalmoscopic examination.
At a later stage, pan-retinal photocoagulation (PRP) with an argon laser appears effective in reducing the neovascular components and their sequelae.
The visual prognosis for ocular ischemic syndrome varies from usually poor to fair, depending on speed and effectiveness of the intervention. However, prompt diagnosis is crucial as the condition may be a presenting sign of serious cerebrovascular and ischemic heart diseases.
In 2009, the Undersea and Hyperbaric Medical Society added "central retinal artery occlusion" to their list of approved indications for hyperbaric oxygen (HBO). When used as an adjunctive therapy, the edema reducing properties of HBO, along with down regulation of inflammatory cytokines may contribute to the improvement in vision. Prevention of vision loss requires that certain conditions be met: the treatment be started before irreversible damage has occurred (over 24 hours), the occlusion must not also occur at the ophthalmic artery, and treatment must continue until the inner layers of the retina are again oxygenated by the retinal arteries.
The diagnosis of BRVO is made clinically by finding retinal hemorrhages in the distribution of an obstructed retinal vein.
- Fluorescein angiography is a helpful adjunct. Findings include delayed venous filling, hypofluorescence caused by hemorrhage and capillary nonperfusion, dilation and tortuosity of veins, leakage due to neovascularization and macular edema.
- Optical coherence tomography is an adjunctive test in BRVO. Macular edema is commonly seen in BRVO in OCT exams. Serial OCT is used as a rapid and noninvasive way of monitoring the macular edema.
Retinopathy is diagnosed by an ophthalmologist or an optometrist during eye examination. Stereoscopic fundus photography is the gold standard for the diagnosis of retinopathy. Dilated fundoscopy, or direct visualization of the fundus, has been shown to be effective as well.
Several treatments have been attempted for CRAS; however, none show definitive improvement in outcomes. The Undersea and Hyperbaric Medical Society lists Central Retinal Artery Occlusion (CRAO) as an approved indication for Hyperbaric Oxygen Therapy. This a treatment for CRAO that is covered by medical insurance in North America. Other treatments include ocular massage, anterior chamber paracentesis, and inhalation therapy of a mixture of 5% carbon dioxide and 95% oxygen.
The artery can re-canalize over time and the edema can clear. However, optic atrophy leads to permanent loss of vision. Irreversible damage to neural tissue occurs after only 90 minutes. Two thirds of patients experience 20/400 vision while only one in six will experience 20/40 vision or better.
Despite the temporary nature of the vision loss, those experiencing amaurosis fugax are usually advised to consult a physician immediately as it is a symptom that may herald serious vascular events, including stroke. Restated, “because of the brief interval between the transient event and a stroke or blindness from temporal arteritis, the workup for transient monocular blindness should be undertaken without delay.” If the patient has no history of giant cell arteritis, the probability of vision preservation is high; however, the chance of a stroke reaches that for a hemispheric TIA. Therefore, investigation of cardiac disease is justified.
A diagnostic evaluation should begin with the patient's history, followed by a physical exam, with particular importance being paid to the ophthalmic examination with regards to signs of ocular ischemia. When investigating amaurosis fugax, an ophthalmologic consult is absolutely warranted if available. Several concomitant laboratory tests should also be ordered to investigate some of the more common, systemic causes listed above, including a complete blood count, erythrocyte sedimentation rate, lipid panel, and blood glucose level. If a particular cause is suspected based on the history and physical, additional relevant labs should be ordered.
If laboratory tests are abnormal, a systemic disease process is likely, and, if the ophthalmologic examination is abnormal, ocular disease is likely. However, in the event that both of these routes of investigation yield normal findings or an inadequate explanation, noninvasive duplex ultrasound studies are recommended to identify carotid artery disease. Most episodes of amaurosis fugax are the result of stenosis of the ipsilateral carotid artery. With that being the case, researchers investigated how best to evaluate these episodes of vision loss, and concluded that for patients ranging from 36–74 years old, "...carotid artery duplex scanning should be performed...as this investigation is more likely to provide useful information than an extensive cardiac screening (ECG, Holter 24-hour monitoring, and precordial echocardiography)." Additionally, concomitant head CT or MRI imaging is also recommended to investigate the presence of a “clinically silent cerebral embolism.”
If the results of the ultrasound and intracranial imaging are normal, “renewed diagnostic efforts may be made,” during which fluorescein angiography is an appropriate consideration. However, carotid angiography is not advisable in the presence of a normal ultrasound and CT.
No proved treatment exists for branch retinal artery occlusion.
In the rare patient who has branch retinal artery obstruction accompanied by a systemic disorder, systemic anti-coagulation may prevent further events.
Treatment consists of Anti-VEGF drugs like Lucentis or intravitreal steroid implant (Ozurdex) and Pan-Retinal Laser Photocoagulation usually. Underlying conditions also require treatment. Non-Ischemic CRVO has better visual prognosis than Ischemic CRVO.
A systematic review studied the effectiveness of the anti-VEGF drugs ranibizumab and pagatanib sodium for patients suffering from non-ischemic CRVO. Though there was a limited sample size, participants in both treatment groups showed improved visual acuity over 6 month periods, with no safety concerns.
In general, BRVO has a good prognosis: after 1 year 50–60% of eyes have been reported to have a final VA of 20/40 or better even without any treatment. With time the dramatic picture of an acute BRVO becomes more subtle, hemorrhages fade so that the retina can look almost normal. Collateral vessels develop to help drain the affected area.
If the diagnostic workup reveals a systemic disease process, directed therapies to treat that underlying cause should be initiated. If the amaurosis fugax is caused by an atherosclerotic lesion, aspirin is indicated, and a carotid endarterectomy considered based on the location and grade of the stenosis. Generally, if the carotid artery is still patent, the greater the stenosis, the greater the indication for endarterectomy. "Amaurosis fugax appears to be a particularly favorable indication for carotid endarterectomy. Left untreated, this event carries a high risk of stroke; after carotid endarterectomy, which has a low operative risk, there is a very low postoperative stroke rate." However, the rate of subsequent stroke after amaurosis is significantly less than after a hemispheric TIA, therefore there remains debate as to the precise indications for which a carotid endarterectomy should be performed. If the full diagnostic workup is completely normal, patient observation is recommended.
A retinal haemorrhage is generally diagnosed by using an ophthalmoscope or fundus camera in order to examine the inside of the eye. A fluorescent dye is often injected into the patient's bloodstream beforehand so the administering ophthalmologist can have a more detailed view of the blood vessels in the retina.
The fluorescent dye can have dangerous side effects: see Fluorescein
Telemedicine programs are available that allow primary care clinics to take images using specially designed retinal imaging equipment which can then be shared electronically with specialists at other locations for review. In 2009, Community Health Center, Inc. implemented a telemedicine retinal screening program for low-income patients with diabetes as part of those patients annual visits at the Federally Qualified Health Center.
Several other diseases can result in retinopathy that can be confused with hypertensive retinopathy. These include diabetic retinopathy, retinopathy due to autoimmune disease, anemia, radiation retinopathy, and central retinal vein occlusion.
A major aim of treatment is to prevent, limit, or reverse target organ damage by lowering the person's high blood pressure to reduce the risk of cardiovascular disease and death. Treatment with antihypertensive medications may be required to control the high blood pressure.
Ocular ischemic syndrome is the constellation of ocular signs and symptoms secondary to severe, chronic arterial hypoperfusion to the eye. Amaurosis fugax is a form of acute vision loss caused by reduced blood flow to the eye; it may be a warning sign of an impending stroke, as both stroke and retinal artery occlusion can be caused by thromboembolism due to atherosclerosis elsewhere in the body (such as coronary artery disease and especially carotid atherosclerosis). Consequently, those with transient blurring of vision are advised to urgently seek medical attention for a thorough evaluation of the carotid artery. Anterior segment ischemic syndrome is a similar ischemic condition of anterior segment usually seen in post-surgical cases. Retinal artery occlusion (such as central retinal artery occlusion or branch retinal artery occlusion) leads to rapid death of retinal cells, thereby resulting in severe loss of vision.
Retinal haemorrhages, especially mild ones not associated with chronic disease, will normally resorb without treatment. Laser surgery is a treatment option which uses a laser beam to seal off damaged blood vessels in the retina. Anti-vascular endothelial growth factor (VEGF) drugs like Avastin and Lucentis have also been shown to repair retinal haemorrhaging in diabetic patients and patients with haemorrhages associated with new vessel growth.
If caught early, the neovascularization can be reversed with prompt pan retinal photocoagulation (PRP), or injection of anti-VEGF medications with subsequent PRP. The injection blocks the direct effect of VEGF and acts more quickly but will wear off in about 6 weeks. PRP has a slower onset of action but can last permanently. Once the neovascularization has been longstanding, the new vessels recruit fibrous tissue, and as this forms and contracts, the angle can be permanently damaged, and will not respond to treatment. If this occurs, then surgical intervention is required to reduce the pressure (such as a glaucoma drainage implant)
The central retinal vein is the venous equivalent of the central retinal artery and, like that blood vessel, it can suffer from occlusion (central retinal vein occlusion, also CRVO), similar to that seen in ocular ischemic syndrome. Since the central retinal artery and vein are the sole source of blood supply and drainage for the retina, such occlusion can lead to severe damage to the retina and blindness, due to ischemia (restriction in blood supply) and edema (swelling).
It can also cause glaucoma.
Nonischemic CRVO is the milder form of the disease. It may progress to the more severe ischemic type.
The treatment method used depends on the cause of the hemorrhage. In most cases, the patient is advised to rest with the head elevated 30–45°, and sometimes to put patches over the eyes to limit movement prior to treatment in order to allow the blood to settle. The patient is also advised to avoid taking medications that cause blood thinning (such as aspirin or similar medications).
The goal of the treatment is to fix the cause of the hemorrhage as quickly as possible. Retinal tears are closed by Laser treatment or cryotherapy, and detached retinas are reattached surgically.
Even after treatment, it can take months for the body to clear all of the blood from the vitreous. In cases of vitreous hemorrhage due to detached retina,long-standing vitreous hemorrhage with a duration of more than 2–3 months, or cases associated with rubeosis iridis or glaucoma, a vitrectomy may be necessary to remove the standing blood in the vitreous.
A minority of retinal detachments result from trauma, including blunt blows to the orbit, penetrating trauma, and concussions to the head. A retrospective Indian study of more than 500 cases of rhegmatogenous detachments found that 11% were due to trauma, and that gradual onset was the norm, with over 50% presenting more than one month after the inciting injury.
This condition is often associated with diabetes in advanced proliferative diabetic retinopathy. Other conditions causing rubeosis iridis include central retinal vein occlusion, ocular ischemic syndrome, and chronic retinal detachment.
Retinal detachment can be examined by fundus photography or ophthalmoscopy. Fundus photography generally needs a considerably larger instrument than the ophthalmoscope, but has the advantage of availing the image to be examined by a specialist at another location and/or time, as well as providing photo documentation for future reference. Modern fundus photographs generally recreate considerably larger areas of the fundus than what can be seen at any one time with handheld ophthalmoscopes.
Ultrasound has diagnostic accuracy similar to that of examination by an ophthalmologist. The recent meta-analysis shows the diagnostic accuracy of emergency department (ED) ocular ultrasonography is high. The sensitivity and specificity ranged from 97% to 100% and 83% to 100%. The typical feature of retinal detachment when viewed on ultrasound is "flying angel sign". It shows the detached retina moving with a fixed point under the B mode, linear probe 10 MHz.
Macular telangiectasia type 1 must be differentiated from secondary telangiectasis caused by retinal vascular diseases such as retinal venous occlusions, diabetic retinopathy, radiation retinopathy, sickle cell maculopathy, inflammatory retinopathy/Irvine–Gass syndrome, ocular ischemic syndrome/carotid artery obstruction, hypertensive retinopathy, polycythemia vera retinopathy, and localized retinal capillary hemangioma. In addition, Macular telangiectasia type 1 should be clearly differentiated from dilated perifoveal capillaries with evidence of vitreous cellular infiltration secondary to acquired inflammatory disease or tapetoretinal dystrophy. Less commonly, macular telangiectasis has been described in association with fascioscapulohumeral muscular dystrophy, incontinentia pigmenti, and familial exudative vitreoretinopathy with posterior pole involvement.
Macular telangiectasia type 2 is commonly under-diagnosed. The findings may appear very similar to diabetic retinopathy, and many cases ave been incorrectly ascribed to diabetic retinopathy or age-related macular degeneration. Recognition of this condition can save an affected patient from unnecessarily undergoing extensive medical testing and/or treatment. MacTel should be considered in cases of mild paramacular dot and blot hemorrhages and in cases of macular and paramacular RPE hyperplasia where no other cause can be identified.
Common symptoms of vitreous hemorrhage include:
- Blurry vision
- Floaters- faint cobweb-like apparitions floating through the field of vision
- Reddish tint to vision
- Photopsia – brief flashes of light in the peripheral vision
Small vitreous hemorrhage often manifests itself as "floaters". A moderate case will often result in dark streaks in the vision, while dense vitreous hemorrhage can significantly inhibit vision.
Vitreous hemorrhage is diagnosed by identifying symptoms, examining the eye, and performing tests to identify cause. Some common tests include:
- Examination of the eye with a microscope
- Pupil dilation and examination
- An ultrasound examination may be used if the doctor does not have a clear view of the back of the eye
- Blood tests to check for specific causes such as diabetes
- A CT scan to check for injury around the eye
- Referral to a retinal specialist