Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A 2014 systematic review of clinical trials does not support using routine rapid viral testing to decrease antibiotic use for children in emergency departments. It is unclear if rapid viral testing in the emergency department for children with acute febrile respiratory infections reduces the rates of antibiotic use, blood testing, or urine testing. The relative risk reduction of chest x-ray utilization in children screened with rapid viral testing is 77% compared with controls. In 2013 researchers developed a breath tester that can promptly diagnose lung infections.
Pulmonary aspiration resulting in pneumonia, in some patients, particularly those with physical limitations, can be fatal.
The lungs are normally protected against aspiration by a series of "protective reflexes" such as coughing and swallowing. Significant aspiration can only occur if the protective reflexes are absent or severely diminished (in neurological disease, coma, drug overdose, sedation or general anesthesia). In intensive care, sitting patients up reduces the risk of pulmonary aspiration and ventilator-associated pneumonia.
Measures to prevent aspiration depend on the situation and the patient. In patients at imminent risk of aspiration, tracheal intubation by a trained health professional provides the best protection. A simpler intervention that can be implemented is to lay the patient on their side in the recovery position (as taught in first aid and CPR classes), so that any vomitus produced by the patient will drain out their mouth instead of back down their pharynx. Some anesthetists will use sodium citrate to neutralize the stomach's low pH and metoclopramide or domperidone (pro-kinetic agents) to empty the stomach.
People with chronic neurological disorders, for example, after a stroke, are less likely to aspirate thickened fluids.
The location of abscesses caused by aspiration depends on the position one is in. If one is sitting or standing up, the aspirate ends up in the posterior basal segment of the right lower lobe. If one is on one's back, it goes to the superior segment of the right lower lobe. If one is lying on the right side, it goes to the posterior segment of the right upper lobe, or the posterior basal segment of the right upper lobe. If one is lying on the left, it goes to the lingula.
Normal surgical masks and N95 masks appear equivalent with respect to preventing respiratory infections.
Respiratory diseases may be investigated by performing one or more of the following tests
- Biopsy of the lung or pleura
- Blood test
- Bronchoscopy
- Chest x-ray
- Computed tomography scan, including high-resolution computed tomography
- Culture of microorganisms from secretions such as sputum
- Ultrasound scanning can be useful to detect fluid such as pleural effusion
- Pulmonary function test
- Ventilation—perfusion scan
Respiratory disease is a common and significant cause of illness and death around the world. In the US, approximately 1 billion "common colds" occur each year. A study found that in 2010, there were approximately 6.8 million emergency department visits for respiratory disorders in the U.S. for patients under the age of 18. In 2012, respiratory conditions were the most frequent reasons for hospital stays among children.
In the UK, approximately 1 in 7 individuals are affected by some form of chronic lung disease, most commonly chronic obstructive pulmonary disease, which includes asthma, chronic bronchitis and emphysema.
Respiratory diseases (including lung cancer) are responsible for over 10% of hospitalizations and over 16% of deaths in Canada.
In 2011, respiratory disease with ventilator support accounted for 93.3% of ICU utilization in the United States.
As with other chest injuries such as pulmonary contusion, hemothorax, and pneumothorax, pulmonary laceration can often be treated with just supplemental oxygen, ventilation, and drainage of fluids from the chest cavity. A thoracostomy tube can be used to remove blood and air from the chest cavity. About 5% of cases require surgery, called thoracotomy. Thoracotomy is especially likely to be needed if a lung fails to re-expand; if pneumothorax, bleeding, or coughing up blood persist; or in order to remove clotted blood from a hemothorax. Surgical treatment includes suturing, stapling, oversewing, and wedging out of the laceration. Occasionally, surgeons must perform a lobectomy, in which a lobe of the lung is removed, or a pneumonectomy, in which an entire lung is removed.
In hospitalised patients who develop respiratory symptoms and fever, one should consider the diagnosis. The likelihood increases when upon investigation symptoms are found of respiratory insufficiency, purulent secretions, newly developed infiltrate on the chest X-Ray, and increasing leucocyte count. If pneumonia is suspected material from sputum or tracheal aspirates are sent to the microbiology department for cultures. In case of pleural effusion thoracentesis is performed for examination of pleural fluid. In suspected ventilator-associated pneumonia it has been suggested that bronchoscopy(BAL) is necessary because of the known risks surrounding clinical diagnoses.
Pulmonary laceration may not be visible using chest X-ray because an associated pulmonary contusion or hemorrhage may mask it. As the lung contusion clears (usually within two to four days), lacerations begin to become visible on chest X-ray. CT scanning is more sensitive and better at detecting pulmonary laceration than X-rays are, and often reveals multiple lacerations in cases where chest X-ray showed only a contusion. Before CT scanning was widely available, pulmonary laceration was considered unusual because it was not common to find with X-ray alone. On a CT scan, pulmonary lacerations show up in a contused area of the lung, typically appearing as cavities filled with air or fluid that usually have a round or ovoid shape due to the lung's elasticity.
Hematomas appear on chest radiographs as smooth masses that are round or ovoid in shape. Like lacerations, hematomas may initially be hidden on X-ray by lung contusions, but they become more apparent as the contusion begins to heal. Pneumatoceles have a similar shape to that of hematomas but have thin, smooth walls. Lacerations may be filled completely with blood, completely with air, or partially with both. Lacerations filled with both blood and air display a distinctive air-fluid level. A single laceration may occur by itself, or many may be present, creating an appearance like Swiss cheese in the radiography of the lung.
Pulmonary laceration is usually accompanied by hemoptysis (coughing up blood or of blood-stained sputum).
Thoracoscopy may be used in both diagnosis and treatment of pulmonary laceration.
A healing laceration may resemble a pulmonary nodule on radiographs, but unlike pulmonary nodules, lacerations decrease in size over time on radiographs.
Lower respiratory tract infections place a considerable strain on the health budget and are generally more serious than upper respiratory infections.
Antibiotics do not help the many lower respiratory infections which are caused by parasites or viruses. While acute bronchitis often does not require antibiotic therapy, antibiotics can be given to patients with acute exacerbations of chronic bronchitis. The indications for treatment are increased dyspnoea, and an increase in the volume or purulence of the sputum. The treatment of bacterial pneumonia is selected by considering the age of the patient, the severity of the illness and the presence of underlying disease. Amoxicillin and doxycycline are suitable for many of the lower respiratory tract infections seen in general practice.
Treatment depends on the underlying cause. Treatments include iced saline, and topical vasoconstrictors such as adrenalin or vasopressin. Selective bronchial intubation can be used to collapse the lung that is bleeding. Also, endobronchial tamponade can be used. Laser photocoagulation can be used to stop bleeding during bronchoscopy. Angiography of bronchial arteries can be performed to locate the bleeding, and it can often be embolized. Surgical option is usually the last resort, and can involve, removal of a lung lobe or removal of the entire lung. Non–small-cell lung cancer can also be treated with erlotinib or gefitinib. Cough suppressants can increase the risk of choking.
In more severe cases, it is treated by administering intravenous antibiotics and may require admission to an intensive care unit (ICU) for intubation and supportive ventilation if the airway swelling is severe. During an intensive care admission, various methods of invasive and non-invasive monitoring may be required, which may include ECG monitoring, oxygen saturation, capnography and arterial blood pressure monitoring.
Bronchomalacia can best be described as a birth defect of the bronchus in the respiratory tract. Congenital malacia of the large airways is one of the few causes of irreversible airways obstruction in children, with symptoms varying from recurrent wheeze and recurrent lower airways infections to severe dyspnea and respiratory insufficiency. It may also be acquired later in life due to chronic or recurring inflammation resulting from infection or other airway disease.
Conditions which commonly involve hemoptysis include bronchitis and pneumonia, lung cancers and tuberculosis. Other possible underlying causes include aspergilloma, bronchiectasis, coccidioidomycosis, pulmonary embolism, pneumonic plague, and cystic fibrosis. Rarer causes include hereditary hemorrhagic telangiectasia (HHT or Rendu-Osler-Weber syndrome), Goodpasture's syndrome, and granulomatosis with polyangiitis. In children, hemoptysis is commonly caused by the presence of a foreign body in the airway. The condition can also result from over-anticoagulation from treatment by drugs such as warfarin.
Blood-laced mucus from the sinus or nose area can sometimes be misidentified as symptomatic of hemoptysis (such secretions can be a sign of nasal or sinus cancer, but also a sinus infection). Extensive non-respiratory injury can also cause one to cough up blood. Cardiac causes like congestive heart failure and mitral stenosis should be ruled out.
The origin of blood can be identified by observing its color. Bright-red, foamy blood comes from the respiratory tract, whereas dark-red, coffee-colored blood comes from the gastrointestinal tract. Sometimes hemoptysis may be rust-colored.
The most common cause of minor hemoptysis is bronchitis.
- Lung cancer, including both non-small cell lung carcinoma and small cell lung carcinoma.
- Sarcoidosis
- Aspergilloma
- Tuberculosis
- Histoplasmosis
- Pneumonia
- Pulmonary edema
- Pulmonary embolism
- Foreign body aspiration and aspiration pneumonia
- Goodpasture's syndrome
- Granulomatosis with polyangiitis
- Eosinophilic granulomatosis with polyangiitis (Churg-Strauss syndrome)
- Bronchitis
- Bronchiectasis
- Pulmonary embolism
- Anticoagulant use
- Trauma
- Lung abscess
- Mitral stenosis
- Tropical eosinophilia
- Bleeding disorders
- Hughes-Stovin Syndrome and other variants of Behçet's disease
- Squamous Cell Carcinoma Of Esophagus
A bronchopleural fistula (BPF) is a fistula between the pleural space and the lung. It can develop following Pneumonectomy, post traumatically, or with certain types of infection. It may also develop when large airways are in communication with the pleural space following a large pneumothorax or other loss of pleural negative pressure, especially during positive pressure mechanical ventilation. On imaging, the diagnosis is suspected indirectly on radiograph. Increased gas in the pneumonectomy operative bed, or new gas within a loculated effusion are highly suggestive of the diagnosis. Infectious causes include tuberculosis, "Actinomyces israelii", "Nocardia", and "Blastomyces dermatitidis". Malignancy and trauma can also result in the abnormal communication.
Bronchomalacia is a term for weak cartilage in the walls of the bronchial tubes, often occurring in children under six months. Bronchomalacia means 'floppiness' of some part of the bronchi. Patients present with noisy breathing and/or wheezing. There is collapse of a main stem bronchus on exhalation. If the trachea is also involved the term tracheobronchomalacia (TBM) is used. If only the upper airway the trachea is involved it is called tracheomalacia (TM). There are two types of bronchomalacia. Primary bronchomalacia is due to a deficiency in the cartilaginous rings. Secondary bronchomalacia may occur by extrinsic compression from an enlarged vessel, a vascular ring or a bronchogenic cyst. Though uncommon, idiopathic (of unknown cause) tracheobronchomalacia has been described in older adults.
Several studies found that healthcare-associated pneumonia is the second most common type of pneumonia, occurring less commonly than community-acquired pneumonia but more frequently than hospital-acquired pneumonia and ventilator-associated pneumonia. In a recent observational study, the rates for CAP, HCAP and HAP were 60%, 25% and 15% respectively. Patients with HCAP are older and more commonly have simultaneous health problems (such as previous stroke, heart failure and diabetes).
The number of residents in long term care facilities is expected to rise dramatically over the next 30 years. These older adults are known to develop pneumonia 10 times more than their community-dwelling peers, and hospital admittance rates are 30 times higher.
To prevent an TIF, intubation time should be limited to less than 2 weeks and proper techniques should be used when performing tracheotomies. The occurrence of an TIF can be reduced by using more flexible and blunt tracheostomy tubes and insuring that the tubes are properly aligned in the patients. Placing the tracheostomy between the second and third tracheal rings can minimize the risk of an TIF. Repetitive head movements, especially, hyperextension of the neck should be avoided as since this movement results in contact between the innominate artery and the underside of the tube.
TIF is a rare condition with a .7% frequency, and an mortality rate approaching 100% without surgical intervention. Immediate diagnosis and intervention of an TIF is critical for the surgical intervention success. 25-30% of TIF patients who reach the operating room survive. Recently, the incidence of TIF may have declined due to advances in tracheostomy tube technology and the introduction of the bedside percutaneous dilatational tracheostomy (PDT).
There is no good evidence supporting the effectiveness of over-the-counter cough medications for reducing coughing in adults or children. Children under 2 years old should not be given any type of cough or cold medicine due to the potential for life-threatening side effects. In addition, according to the American Academy of Pediatrics, the use of cough medicine to relieve cough symptoms should be avoided in children under 4 years old, and the safety is questioned for children under 6 years old.
According to a Cochrane review, single oral dose of nasal decongestant in the common cold is modestly effective for the short term relief of congestion in adults; however, "there is insufficient data on the use of decongestants in children." Therefore, decongestants are not recommended for use in children under 12 years of age with the common cold. Oral decongestants are also contraindicated in patients with hypertension, coronary artery disease, and history of bleeding strokes.
Given the constant threat of bioterrorist related events, there is an urgent need to develop pulmonary protective and reparative agents that can be used by first responders in a mass casualty setting. Use in such a setting would require administration via a convenient route for e.g. intramuscular via epipens. Other feasible routes of administration could be inhalation and perhaps to a lesser extent oral – swallowing can be difficult in many forms of injury especially if accompanied by secretions or if victim is nauseous. A number of in vitro and in vivo models lend themselves to preclinical evaluation of novel pulmonary therapies.
Little is known in terms of effective means of prevention. Due to the low likelihood of transmission even from an infected mother, it is not recommended to expose the mother and child to the additional risks of caesarean section to prevent the transmission of this disease during vaginal childbirth. Opting for a caesarean section does not guarantee that transmission will not still occur.
Woodring et al. (1991) suggested the following diagnostic criteria for tracheomegaly in adults based on chest radiography:
- Adult Males: Tracheal transverse diameter > 25 mm and sagittal diameter > 27 mm.
- Adult Females: Tracheal transverse diameter > 21 mm and sagittal diameter > 23 mm.