Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
After removal, the testicle is fixed with Bouin's solution because it better conserves some morphological details such as nuclear conformation. Then the testicular tumor is staged by a pathologist according to the TNM Classification of Malignant Tumors as published in the AJCC Cancer Staging Manual. Testicular cancer is categorized as being in one of three stages (which have subclassifications). The size of the tumor in the testis is irrelevant to staging. In broad terms, testicular cancer is staged as follows:
- Stage I: the cancer remains localized to the testis.
- Stage II: the cancer involves the testis and metastasis to retroperitoneal and/or paraaortic lymph nodes (lymph nodes below the diaphragm).
- Stage III: the cancer involves the testis and metastasis beyond the retroperitoneal and paraaortic lymph nodes. Stage 3 is further subdivided into non-bulky stage 3 and bulky stage 3.
Further information on the detailed staging system is available on the website of the American Cancer Society.
For many patients with stage I cancer, adjuvant (preventative) therapy following surgery may not be appropriate and patients will undergo surveillance instead. The form this surveillance takes, e.g. the type and frequency of investigations and the length time it should continue, will depend on the type of cancer (non-seminoma or seminoma), but the aim is to avoid unnecessary treatments in the many patients who are cured by their surgery, and ensure that any relapses with metastases (secondary cancers) are detected early and cured. This approach ensures that chemotherapy and or radiotherapy is only given to the patients that need it. The number of patients ultimately cured is the same using surveillance as post-operative “adjuvant” treatments, but the patients have to be prepared to follow a prolonged series of visits and tests.
For both non-seminomas and seminomas, surveillance tests generally include physical examination, blood tests for tumor markers, chest x-rays and CT scanning. However, the requirements of a surveillance program differ according to the type of disease since, for seminoma patients, relapses can occur later and blood tests are not as good at indicating relapse.
CT scans are performed on the abdomen (and sometimes the pelvis) and also the chest in some hospitals. Chest x-rays are increasingly preferred for the lungs as they give sufficient detail combined with a lower false-positive rate and significantly smaller radiation dose than CT.
The frequency of CT scans during surveillance should ensure that relapses are detected at an early stage while minimizing the radiation exposure.
For patients treated for stage I non-seminoma, a randomised trial (Medical Research Council TE08) showed that, when combined with the standard surveillance tests described above, 2 CT scans at 3 and 12 months were as good as 5 over 2 years in detecting relapse at an early stage.
For patients treated for stage I seminoma who choose surveillance rather than undergoing adjuvant therapy, there have been no randomized trials to determine the optimum frequency of scans and visits, and the schedules vary very widely across the world, and within individual countries. In the UK there is an ongoing clinical trial called TRISST. This is assessing how often scans should take place and whether magnetic resonance imaging (MRI) can be used instead of CT scans. MRI is being investigated because it does not expose the patient to radiation and so, if it is shown to be as good at detecting relapses, it may be preferable to CT.
For more advanced stages of testicular cancer, and for those cases in which radiation therapy or chemotherapy was administered, the extent of monitoring (tests) after treatment will vary on the basis of the circumstances, but normally should be done for five years in uncomplicated cases and for longer in those with higher risks of relapse.
A retrospective study of 83 women with sex cord–stromal tumours (73 with granulosa cell tumour and 10 with Sertoli-Leydig cell tumour), all diagnosed between 1975 and 2003, reported that survival was higher with age under 50, smaller tumour size, and absence of residual disease. The study found no effect of chemotherapy. A retrospective study of 67 children and adolescents reported some benefit of cisplatin-based chemotherapy.
A prospective study of ovarian sex cord–stromal tumours in children and adolescents began enrolling participants in 2005.
GCNIS is not palpable, and not visible on macroscopic examination of testicular tissue. Microscopic examination of affected testicular tissue most commonly shows germ cells with enlarged hyperchromatic nuclei with prominent nucleoli and clear cytoplasm. These cells are typically arranged along the basement membrane of the tubule, and mitotic figures are frequently seen. The sertoli cells are pushed toward the lumen by the neoplastic germ cells, and spermatogenesis is almost always absent in the affected tubules. Pagetoid spread of GCNIS into the rete testis is common. Immunostaining with placental alkaline phosphatase (PLAP) highlights GCNIS cell membranes in 95 percent of cases. OCT3/4 is a sensitive and specific nuclear stain of GCNIS.
The 1997 International Germ Cell Consensus Classification is a tool for estimating the risk of relapse after treatment of malignant germ cell tumor.
A small study of ovarian tumors in girls reports a correlation between cystic and benign tumors and, conversely, solid and malignant tumors. Because the cystic extent of a tumor can be estimated by ultrasound, MRI, or CT scan before surgery, this permits selection of the most appropriate surgical plan to minimize risk of spillage of a malignant tumor.
Access to appropriate treatment has a large effect on outcome. A 1993 study of outcomes in Scotland found that for 454 men with non-seminomatous (non-germinomatous) germ cell tumors diagnosed between 1975 and 1989, 5-year survival increased over time and with earlier diagnosis. Adjusting for these and other factors, survival was 60% higher for men treated in a cancer unit that treated the majority of these men, even though the unit treated more men with the worst prognosis.
Choriocarcinoma of the testicles has the worst prognosis of all germ cell cancers
In the detection of bone metastases, skeletal scintigraphy (bone scan) is very sensitive and is recommended as the first imaging study in asymptomatic individuals with suspected breast-cancer metastases. X-ray radiography is recommended if there is abnormal radionuclide uptake from the bone scan and in assessing the risk of pathological fractures, and is recommended as the initial imaging study in patients with bone pain. MRI or the combination PET-CT may be considered for cases of abnormal radionuclide uptake on bone scan, when radiography does not give an acceptably clear result.
Clinically symptomatic CNS metastases are reported in 10–15% of patients with metastatic breast cancer; in large autopsy studies, up to 40% of women who died of metastatic breast cancer were reported to have at least one brain metastasis. CNS metastases are often viewed by patients and doctors as a late complication of metastatic breast cancer for which few effective treatments exist. In most cases, CNS involvement occurs after metastatic dissemination to the bones, liver and/or lungs has already occurred; for that reason, many patients already have refractory, terminal breast cancer by the time they are diagnosed with brain metastases. The diagnosis of brain metastases from breast cancer relies mainly on patient-reported symptoms and neuroimaging. The role of imaging in patients with suspected brain metastases is a very good modality to aid in diagnosis. According to Weil et al., 2005, neuroimaging such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) prove to be very effective in the diagnosis of brain and central nervous system metastases.
Symptoms of brain metastases from breast cancer are:
- new-onset headache
- changes in mental status, cognition and behavior
- ataxia
- cranial neuropathy, which may cause diplopia and Bell's palsy
- vomiting and nausea
- deficits in sensation, motor function, and speech
Of all brain-metastatic patients, those with a controlled extra-cranial tumor, age less than 65 years and a favorable general performance (Karnofsky performance status ≥70) fare best; older patients with a Karnofsky performance status below 70 do poorly. Effective treatments for brain metastases from breast cancer exist, although symptomatic therapy alone may be chosen for those with poor performance status. Corticosteroids are crucial to the treatment of brain metastases from any source (including the breast), and are effective in reducing peri-tumoral edema and providing symptomatic relief. Chemotherapy has not been found to be effective in the treatment of brain metastases from breast cancer, due to the inability of most chemotheraputic agents to penetrate the blood–brain barrier. Whole-brain radiation may provide a median survival of 4 to 5 months, which can be further extended by months with stereotactic surgery. Several non-randomized studies have suggested that stereotactic surgery may provide a nearly equivalent outcome, compared with surgery followed by whole brain-irradiation. Surgery tends to reduce symptoms quickly and prolong life, with an improved quality of life. Multiple metastases (up to three) may be removed surgically with a risk similar to that of a single lesion, providing similar benefits. Adjuvant radiotherapy follows surgical resection; this combined approach has been shown to prolong median survival up to 12 months, depending on the factors noted above. There is evidence that surgery may be useful in select patients with recurrent brain metastases. Mean survival from diagnosis of a brain metastasis varies between studies, ranging from 2 to 16 months (depending on involvement of the CNS, the extent of the extra-cranial metastatic disease, and the treatment applied). The mean 1-year survival is estimated at 20%. Improvements in the treatment of brain metastases are clearly needed.
Women with benign germ cell tumors such as mature teratomas (dermoid cysts) are cured by ovarian cystectomy or oophorectomy. In general, all patients with malignant germ cell tumors will have the same staging surgery that is done for epithelial ovarian cancer. If the patient is in her reproductive years, an alternative is unilateral salpingoophorectomy, while the uterus, the ovary, and the fallopian tube on the opposite side can be left behind. This isn't an option when the cancer is in both ovaries. If the patient has finished having children, the surgery involves complete staging including salpingoophorectomy on both sides as well as hysterectomy.
Most patients with germ cell cancer will need to be treated with combination chemotherapy for at least 3 cycles. The chemotherapy regimen most commonly used in germ cell tumors is called PEB (or BEP), and consists of bleomycin, etoposide, a platinum-based antineoplastic (cisplatin).
GCNIS is generally treated by radiation therapy and/or orchiectomy. Chemotherapy used for metastatic germ cell tumours may also eradicate GCNIS.
Urine catecholamine level can be elevated in pre-clinical neuroblastoma. Screening asymptomatic infants at three weeks, six months, and one year has been performed in Japan, Canada, Austria and Germany since the 1980s. Japan began screening six-month-olds for neuroblastoma via analysis of the levels of homovanillic acid and vanilmandelic acid in 1984. Screening was halted in 2004 after studies in Canada and Germany showed no reduction in deaths due to neuroblastoma, but rather caused an increase in diagnoses that would have disappeared without treatment, subjecting those infants to unnecessary surgery and chemotherapy.
Spermatocytic seminomas are diagnosed based on tissue from orchiectomy (or partial orchiectomy), done for a lesion suspicious for cancer on medical imaging.
The macroscopic appearance of the tumour is of a mutinodular grey-white to tan coloured mass with gelatinous, haemorrhagic and necrotic areas. The tumour may extend beyond the testis.
Magnetic Resonance Imaging (MRI) scans provide an image of the soft tissues in the body using radio waves and strong magnets. MRI can be used instead of CT if the patient exhibits an allergy to the contrast media administered for the test. Sometimes prior to the MRI scan, an intravenous injection of a contrasting material called gadolinium is given to allow for a more detailed image. Patients on dialysis or those who have renal insufficiency should avoid this contrasting material as it may induce a rare, yet severe, side effect known as nephrogenic systemic fibrosis. A bone scan or brain imaging is not routinely performed unless signs or symptoms suggest potential metastatic involvement of these areas.
MRI scans should also be considered to evaluate tumour extension which has grown in major blood vessels, including the vena cava, in the abdomen. MRI can be used to observe the possible spread of cancer to the brain or spinal cord should the patient present symptoms that suggest this might be the case.
Unlike classical seminoma, spermatocytic seminomas rarely metastasise, so radical orchidectomy alone is sufficient treatment, and retroperitoneal lymph node dissection and adjuvant chemotherapy or radiotherapy are generally not required.
Since gestational choriocarcinoma (which arises from a hydatidiform mole) contains paternal DNA (and thus paternal antigens), it is exquisitely sensitive to chemotherapy. The cure rate, even for metastatic gestational choriocarcinoma, is around 90–95%.
At present, treatment with single-agent methotrexate is recommended for low-risk disease, while intense combination regimens including EMACO (etoposide, methotrexate, actinomycin D, cyclosphosphamide and vincristine (Oncovin) are recommended for intermediate or high-risk disease.
Hysterectomy (surgical removal of the uterus) can also be offered to patients > 40 years of age or those for whom sterilisation is not an obstacle. It may be required for those with severe infection and uncontrolled bleeding.
Choriocarcinoma arising in the testicle is rare, malignant and highly resistant to chemotherapy. The same is true of choriocarcinoma arising in the ovary. Testicular choriocarcinoma has the worst prognosis of all germ-cell cancers.
Ultrasonographic examination can be useful in evaluating questionable asymptomatic kidney tumours and cystic renal lesions if Computed Tomography imaging is inconclusive. This safe and non-invasive radiologic procedure uses high frequency sound waves to generate an interior image of the body on a computer monitor. The image generated by the ultrasound can help diagnose renal cell carcinoma based on the differences of sound reflections on the surface of organs and the abnormal tissue masses. Essentially, ultrasound tests can determine whether the composition of the kidney mass is mainly solid or filled with fluid.
A Percutaneous biopsy can be performed by a radiologist using ultrasound or computed tomography to guide sampling of the tumour for the purpose of diagnosis by pathology. However this is not routinely performed because when the typical imaging features of renal cell carcinoma are present, the possibility of an incorrectly negative result together with the risk of a medical complication to the patient may make it unfavourable from a risk-benefit perspective. However, biopsy tests for molecular analysis to distinguish benign from malignant renal tumours is of investigative interest.
Dysgerminomas, like other seminomatous germ cell tumors, are very sensitive to both chemotherapy and radiotherapy. For this reason, with treatment patients' chances of long-term survival, even cure, is excellent.
Another way to detect neuroblastoma is the mIBG scan (meta-iodobenzylguanidine), which is taken up by 90 to 95% of all neuroblastomas, often termed "mIBG-avid." The mechanism is that mIBG is taken up by sympathetic neurons, and is a functioning analog of the neurotransmitter norepinephrine. When it is radio-ionated with I-131 or I-123 (radioactive iodine isotopes), it is a very good radiopharmaceutical for diagnosis and monitoring of response to treatment for this disease. With a half-life of 13 hours, I-123 is the preferred isotope for imaging sensitivity and quality. I-131 has a half-life of 8 days and at higher doses is an effective therapy as targeted radiation against relapsed and refractory neuroblastoma.
Intracranial germinoma occurs in 0.7 per million children. As with other germ cell tumors (GCTs) occurring outside the gonads, the most common location of intracranial germinoma is on or near the midline, often in the pineal or suprasellar areas; in 5-10% of patients with germinoma in either area, the tumor is in both areas. Like other (GCTs), germinomas can occur in other parts of the brain. Within the brain, this tumor is most common in the hypothalamic or hypophyseal regions. In the thalamus and basal ganglia, germinoma is the most common GCT.
The diagnosis of an intracranial germinoma usually is based on biopsy, as the features on neuroimaging appear similar to other tumors.
Cytology of the CSF often is studied to detect metastasis into the spine. This is important for staging and radiotherapy planning.
Intracranial germinomas have a reported 90% survival to five years after diagnosis. Near total resection does not seem to influence the cure rate, so gross total resection is not necessary and can increase the risk of complications from surgery. The best results have been reported from craniospinal radiation with local tumor boost of greater than 4,000 cGy.
The presenting features may be a palpable testicular mass or asymmetric testicular enlargement in some cases. The tumour may present as signs and symptoms relating to the presence of widespread metastases, without any palpable lump in the testis. The clinical features associated with metastasising embryonal carcinoma may include low back pain, dyspnoea, cough, haemoptysis, haematemesis and neurologic abnormalities.
Males with embryonal carcinoma tend to have a normal range serum AFP. The finding of elevated AFP is more suggestive of a mixed germ cell tumour, with the AFP being released by a yolk sac tumour component.
Germinomas, like several other types of germ cell tumor, are sensitive to both chemotherapy and radiotherapy. For this reason, treatment with these methods can offer excellent chances of longterm survival, even cure.
Although chemotherapy can shrink germinomas, it is not generally recommended alone unless there are contraindications to radiation. In a study in the early 1990s, carboplatinum, etoposide and bleomycin were given to 45 germinoma patients, and about half the patients relapsed. Most of these relapsed patients were then recovered with radiation or additional chemotherapy.
Resistant cancer or refractory cancer is the cancer that doesn't respond to treatment. It may be resistant at the beginning of treatment, or it may become resistant during treatment.
In the ovary, embryonal carcinoma is quite rare, amounting to approximately three percent of ovarian germ cell tumours. The median age at diagnosis is 15 years. Symptoms and signs are varied, and may include sexual precocity and abnormal (increased, reduced or absent) uterine bleeding.
There may be elevations in serum human chorionic gonadotropin (hCG) and alpha fetoprotein (AFP) levels but it would be in association with other tumors, (e.g. yolk sac tumor) because they themselves do not produce the serum markers. At surgery, there is extension of the tumour beyond the ovary in forty percent of cases. They are generally large, unilateral tumours, with a median diameter of 17 centimetres. Long-term survival has improved following the advent of chemotherapy. The gross and histologic features of this tumour are similar to that seen in the testis.
NMC when viewed microscopically, are poorly differentiated carcinomas which show abrupt transitions to islands of well-differentiated squamous epithelium. This tumor pattern is not specific or unique to NUT midline carcinoma, but this pattern is most suggestive of the diagnosis. The neoplastic cells will show a positive reaction with various cytokeratins, p63, CEA, and CD34 immunohistochemistry. However, the NUT antibody confirms the diagnosis (although only available in a limited number of laboratories).
The differential diagnosis is quite wide, but it is important to consider this tumor type when seeing a poorly differentiated tumor that shows abrupt areas of keratinization. Other tumors included in the differential diagnosis are sinonasal undifferentiated carcinomas, Ewing sarcoma/Primitive neuroectodermal tumor, leukemia, rhabdomyosarcoma, and melanoma. When NUT midline carcinoma is seen in the head and neck, the squamous lining of the cavities may be entrapped by the neoplastic cells, and so it is important to document the carcinoma cells in the rest of the tumor by a variety of stains (including cytokeratin or p63). One of the most helpful and characteristic findings is the focal abrupt squamous differentiation, where stratification and gradual differentiation are absent, resembling a Hassall corpuscle of the thymus.
The defining feature of NMCs is rearrangement of the "NUT" gene.
Most common is a translocation involving the BRD4 gene and NUT gene (t(15;19)(q13;p13.1)).
A dysgerminoma is a type of germ cell tumor; it usually is malignant and usually occurs in the ovary.
A tumor of the identical histology but not occurring in the ovary may be described by an alternate name: seminoma in the testis or germinoma in the central nervous system or other parts of the body.
Dysgerminoma accounts for less than 1% of ovarian tumors overall. Dysgerminoma usually occurs in adolescence and early adult life; about 5% occur in pre-pubertal children. Dysgerminoma is extremely rare after age 50. Dysgerminoma occurs in both ovaries in 10% of patients and, in a further 10%, there is microscopic tumor in the other ovary.
Abnormal gonads (due to gonadal dysgenesis and androgen insensitivity syndrome) have a high risk of developing a dysgerminoma. Most dysgerminomas are associated with elevated serum lactic dehydrogenase (LDH), which is sometimes used as a tumor marker.