Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Anecdotal data gathered from helminth self-treaters and their physicians and presented in socio-medical studies suggest that a much larger number of diseases may be amenable to helminthic therapy than are currently being investigated by formal clinical trials.
Based on studies conducted in the United States, the prognosis for individuals with ALECT2 amyloidosis is guarded, particularly because they are elderly and their kidney disease is usually well-advanced at the time of presentation. End-stage renal disease develops in 1 out of 3 patients and has a median renal survival of 62 months. A suggested prognostic tool is to track creatinine levels in ALect2 patients. The attached Figure gives survival plotss for individuals with LECT2 renal amyloidosis and serum creatinine levels less than 2 mg/100 ml versus 2 mg/100 ml or greater than 2 mg/100 ml. The results show that afflicted individuals with lower creatinine levels have a ~four-fold higher survival rate.
The more common and serious version of Canavan disease typically result in death or development of life-threatening conditions by the age of ten, though life expectancy is variable, and is highly dependent on specific circumstances. On the other hand, the milder variants of the disorder seem not to have any effect on lifespan.
On infection the microorganism can be found in blood and cerebrospinal fluid (CSF) for the first 7 to 10 days (invoking serologically identifiable reactions) and then moving to the kidneys. After 7 to 10 days the microorganism can be found in fresh urine. Hence, early diagnostic efforts include testing a serum or blood sample serologically with a panel of different strains.
Kidney function tests (blood urea nitrogen and creatinine) as well as blood tests for liver functions are performed. The latter reveal a moderate elevation of transaminases. Brief elevations of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyltransferase (GGT) levels are relatively mild. These levels may be normal, even in children with jaundice.
Diagnosis of leptospirosis is confirmed with tests such as enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR). The MAT (microscopic agglutination test), a serological test, is considered the gold standard in diagnosing leptospirosis. As a large panel of different leptospira must be subcultured frequently, which is both laborious and expensive, it is underused, especially in developing countries.
Differential diagnosis list for leptospirosis is very large due to diverse symptoms. For forms with middle to high severity, the list includes dengue fever and other hemorrhagic fevers, hepatitis of various causes, viral meningitis, malaria, and typhoid fever. Light forms should be distinguished from influenza and other related viral diseases. Specific tests are a must for proper diagnosis of leptospirosis.
Under circumstances of limited access (e.g., developing countries) to specific diagnostic means, close attention must be paid to the medical history of the patient. Factors such as certain dwelling areas, seasonality, contact with stagnant contaminated water (bathing, swimming, working on flooded meadows, etc.) or rodents in the medical history support the leptospirosis hypothesis and serve as indications for specific tests (if available).
"Leptospira" can be cultured in Ellinghausen-McCullough-Johnson-Harris medium (EMJH), which is incubated at 28 to 30 °C. The median time to positivity is three weeks with a maximum of three months. This makes culture techniques useless for diagnostic purposes but is commonly used in research.
In patients with elevated eosiniphils, serology can be used to confirm a diagnosis of Angiostrongylias rather than infection with another parasite. There are a number of immunoassays that can aid in diagnosis, however serologic testing is available in few labs in the endemic area, and is frequently too non-specific. Some cross reactivity has been reported between "A. cantonensis" and trichinosis, making diagnosis less specific.
The most definitive diagnosis always arises from the identification of larvae found in the CSF or eye, however due to this rarity a clinical diagnosis based on the above tests is most likely.
This condition is diagnosed by detecting the bacteria in skin, blood, joint fluid, or lymph nodes. Blood antibody tests may also be used. To get a proper diagnosis for rat-bite fever, different tests are run depending on the symptoms being experienced.
To diagnosis streptobacillary rat-bite fever, blood or joint fluid is extracted and the organisms living in it are cultured. Diagnosis for spirillary rat bite fever is by direct visualization or culture of spirilla from blood smears or tissue from lesions or lymph nodes. Treatment with antibiotics is the same for both types of infection. The condition responds to penicillin, and where allergies to it occur, erythromycin or tetracyclines are used.
Because vision loss is often an early sign, Batten disease/NCL may be first suspected during an eye exam. An eye doctor can detect a loss of cells within the eye that occurs in the three childhood forms of Batten disease/NCL. However, because such cell loss occurs in other eye diseases, the disorder cannot be diagnosed by this sign alone. Often an eye specialist or other physician who suspects Batten disease/NCL may refer the child to a neurologist, a doctor who specializes in disease of the brain and nervous system. In order to diagnose Batten disease/NCL, the neurologist needs the patient's medical history and information from various laboratory tests.
Diagnostic tests used for Batten disease/NCLs include:
- Skin or tissue sampling. The doctor can examine a small piece of tissue under an electron microscope. The powerful magnification of the microscope helps the doctor spot typical NCL deposits. These deposits are found in many different tissues, including skin, muscle, conjunctiva, rectal and others. Blood can also be used. These deposits take on characteristic shapes, depending on the variant under which they are said to occur: granular osmophilic deposits (GRODs) are generally characteristic of INCL, while curvilinear profiles, fingerprint profiles, and mixed-type inclusions are typically found in LINCL, JNCL, and ANCL, respectively.
- Electroencephalogram or EEG. An EEG uses special patches placed on the scalp to record electrical currents inside the brain. This helps doctors see telltale patterns in the brain's electrical activity that suggest a patient has seizures.
- Electrical studies of the eyes. These tests, which include visual-evoked responses (VER) and electroretinograms (ERG), can detect various eye problems common in childhood Batten disease/NCLs.
- Brain scans. Imaging can help doctors look for changes in the brain's appearance. The most commonly used imaging technique is computed tomography (CT), which uses x-rays and a computer to create a sophisticated picture of the brain's tissues and structures. A CT scan may reveal brain areas that are decaying in NCL patients. A second imaging technique that is increasingly common is magnetic resonance imaging, or MRI. MRI uses a combination of magnetic fields and radio waves, instead of radiation, to create a picture of the brain.
- Enzyme assay. A recent development in diagnosis of Batten disease/NCL is the use of enzyme assays that look for specific missing lysosomal enzymes for infantile and late infantile only. This is a quick and easy diagnostic test.
Brain lesions, with invasion of both gray and white matter, can be seen on a CT or MRI. However MRI findings tend to be inconclusive, and usually include nonspecific lesions and ventricular enlargement. Sometimes a hemorrhage, probably produced by migrating worms, is present and of diagnostic value.
Blood tests and microscopy can be used to aid in the diagnosis of trichinosis. Blood tests include a complete blood count for eosinophilia, creatine phosphokinase activity, and various immunoassays such as ELISA for larval antigens.
Clinical presentation of the common trichinosis symptoms may also suggest infection. These symptoms include eye puffiness, splinter hemorrhage, nonspecific gastroenteritis, and muscle pain. The case definition for trichinosis at the European Center for Disease Control states "at least three of the following six: fever, muscle soreness and pain, gastrointestinal symptoms, facial edema, eosinophilia, and subconjuctival, subungual, and retinal hemorrhages."
There has too little experience on the treatment of LECT2 amyloidosis to establish recommendations other than offering methods to support kidney function and dialysis. Nonetheless, it is important to accurately diagnose ALECT2-based amyloid disease in order to avoid treatment for other forms of amyloidosis.
The older classification of NCL divided the condition into four types (CLN1, CLN2, CLN3, and CLN4) based upon age of onset, while newer classifications divide it by the associated gene.
CLN4 (unlike CLN1, CLN2, and CLN3) has not been mapped to a specific gene.
Evidence in support of the idea that helminthic infections reduce the severity of autoimmune diseases is primarily derived from animal models. Studies conducted on mice and rat models of colitis, muscular sclerosis, type 1 diabetes, and asthma have shown helminth-infected subjects to display protection from the disease. While helminths are often considered a homogenous group, considerable differences exist between species and the utilization of species in clinical research varies between human and animal trials. As such, caution must be exercised when interpreting the results from animal models.
Helminthic therapy is currently being studied as a treatment for several (non-viral) autoimmune diseases in humans including celiac disease, Crohn's disease, multiple sclerosis, ulcerative colitis, and atherosclerosis. It is currently unknown which clinical dose or species of helminth is the most effective method of treatment. Hookworms have been linked to reduced risk of developing asthma, while "Ascaris lumbricoides" (roundworm infection) was associated with an "increased" risk of asthma. Similarly, "Hymenolepis nana", "Trichoris trichiura", "Ascaris lumbricoides", "Strongyloides stercolaris", "Enterobius vermicularis", and "Trichuris suis" ova have all been found to lower the number of symptom exacerbations, reduce the number of symptom relapses, and decrease the number of new or enlarging brain lesions in patients with multiple sclerosis at doses ranging from 1,180 to 9,340 eggs per gram. However, "Ascaris lumbricoides", "Strongyloides stercolaris" and "Enterobius vermicularis" are not considered suitable for therapeutic use in humans because they do not meet the criteria for a therapeutic helminth.
"Trichuris suis" ova has been used in most cases to treat autoimmune disorders because it is thought to be non-pathogenic in humans and therefore has been rendered as safe.
The use of "Trichuris suis" ova has been granted by the USA Food and Drug Administration as an investigational medicinal product (IMP). While in the UK, the hookworm "Necator americanus" has been granted an IMP license by the Medicines and Healthcare Regulatory Authority. This hookworm is likely to be relatively safe, although it can cause temporary gastrointestinal side effects, especially following the initial inoculation and with larger doses.
The general ideal characteristics for a therapeutic helminth are as follows:
- Little or no pathogenic potential
- Does not multiply in the host
- Cannot be directly spread to close contacts
- Produces a self-limited colonization in humans
- Produces an asymptomatic colonization in humans
- Does not alter behaviour in patients with depressed immunity
- Is not affected by most commonly used medications
- Can be eradicated with an anti-helminthic drug
- Can be isolated free of other potential pathogens
- Can be isolated or produced in large numbers
- Can be made stable for transport and storage
- Easy to administer
While obviously preventable by staying away from rodents, otherwise hands and face should be washed after contact and any scratches both cleaned and antiseptics applied. The effect of chemoprophylaxis following rodent bites or scratches on the disease is unknown. No vaccines are available for these diseases.
Improved conditions to minimize rodent contact with humans are the best preventive measures. Animal handlers, laboratory workers, and sanitation and sewer workers must take special precautions against exposure. Wild rodents, dead or alive, should not be touched and pets must not be allowed to ingest rodents.
Those living in the inner cities where overcrowding and poor sanitation cause rodent problems are at risk from the disease. Half of all cases reported are children under 12 living in these conditions.
Urban plague is an infectious disease among rodent species that live in close association with humans in urban areas. It is caused by the bacterium Yersinia pestis which is the same bacterium that causes bubonic and pneumonic plague in humans. Plague was first introduced into the United States in 1900 by rat–infested steamships that had sailed from affected areas, mostly from Asia. Urban plague spread from urban rats to rural rodent species, especially among prairie dogs in the western United States.
There is no cure for Canavan disease, nor is there a standard course of treatment. Treatment is symptomatic and supportive. There is also an experimental treatment using lithium citrate. When a person has Canavan disease, his or her levels of N-acetyl aspartate are chronically elevated. The lithium citrate has proven in a rat genetic model of Canavan disease to be able to significantly decrease levels of N-acetyl aspartate. When tested on a human, the subject's condition reversed during a two-week wash-out period after withdrawal of lithium.
The investigation revealed both decreased N-acetyl aspartate levels in regions of the brain tested and magnetic resonance spectroscopic values that are more characteristic of normal development and myelination. This evidence suggests that a larger controlled trial of lithium may be warranted as supportive therapy for children with Canavan disease.
Experimental gene therapy trial results, published in 2002, used a healthy gene to take over for the defective one that causes Canavan disease.
In human trials, the results of which were published in 2012, this method appeared to improve the life of the patient without long-term adverse effects during a 5-year follow-up.
In 1993, Peter James Dyck divided HSAN I further into five subtypes HSAN IA-E based on the presence of additional features. These features were thought to result from the genetic diversity of HSAN I (i.e. the expression of different genes, different alleles of a single gene, or modifying genes) or environmental factors. Molecular genetic studies later confirmed the genetic diversity of the disease.
For demodectic mange, properly performed deep skin scrapings generally allow the veterinarian to identify the microscopic mites. Acetate tape impression with squeezing has recently found to be a more sensitive method to identify mites. It was originally thought that because the mite is a normal inhabitant of the dog's skin, the presence of the mites does not conclusively mean the dog suffers from demodex. Recent research, however, found that demodex mite can hardly be found on clinically normal dogs, meaning that the presence of any number of mites in a sample is very likely to be significant. In breeds such as the West Highland White Terrier, relatively minor skin irritation which would otherwise be considered allergy should be carefully scraped because of the predilection of these dogs to demodectic mange. Skin scrapings may be used to follow the progress of treatment in demodectic mange.
Alternatively, plasma levels of zinc and copper have been seen to be decreased in dogs suffering with demodicosis. This may be due to inflammation involved in the immune response of demodicosis which can lead to oxidative stress resulting in dogs suffering from demodicosis to exhibit higher levels of antioxidant productivity. The catalases involved in the antioxidant pathway require the trace minerals zinc and copper. Dogs with demodicosis show a decrease in plasma copper and zinc levels due to the increased demand for antioxidant activity. Therefore, this may be considered as a potential marker for demodicosis.
Doxycycline has been provided once a week as a prophylaxis to minimize infections during outbreaks in endemic regions. However, there is no evidence that chemoprophylaxis is effective in containing outbreaks of leptospirosis, and use of antibiotics increases antibiotics resistance. Pre-exposure prophylaxis may be beneficial for individuals traveling to high-risk areas for a short stay.
Effective rat control and avoidance of urine contaminated water sources are essential preventive measures. Human vaccines are available only in a few countries, such as Cuba and China. Animal vaccines only cover a few strains of the bacteria. Dog vaccines are effective for at least one year.
The diagnosis of HSAN I is based on the observation of symptoms described above and is supported by a family history suggesting autosomal dominant inheritance. The diagnosis is also supported by additional tests, such as nerve conduction studies in the lower limbs to confirm a sensory and motor neuropathy. In sporadic cases, acquired neuropathies, such as the diabetic foot syndrome and alcoholic neuropathy, can be excluded by the use of magnetic resonance imaging and by interdisciplinary discussion between neurologists, dermatologists, and orthopedics.
The diagnosis of the disease has been revolutionized by the identification of the causative genes. The diagnosis is now based on the detection of the mutations by direct sequencing of the genes. Nevertheless, the accurate phenotyping of patients remains crucial in the diagnosis. For pregnant patients, termination of pregnancy is not recommended.
HSAN I must be distinguished from hereditary motor and sensory neuropathy (HMSN) and other types of hereditary sensory and autonomic neuropathies (HSAN II-V). The prominent sensory abnormalities and foot ulcerations are the only signs to separate HSAN I from HMSN. HSAN II can be differentiated from HSAN I as it is inherited as an autosomal recessive trait, it has earlier disease onset, the sensory loss is diffused to the whole body, and it has less or no motor symptoms. HSAN III-V can be easily distinguished from HSAN I because of congenital disease onset. Moreover, these types exhibit typical features, such as the predominant autonomic disturbances in HSAN III or congenital loss of pain and anhidrosis in HSAN IV.
Common vectors for urban plague are house mice, black rats, and Norway rats.
Laboratory testing is required in order to diagnose and confirm plague. Ideally, confirmation is through the identification of "Y. pestis" culture from a patient sample. Confirmation of infection can be done by examining serum taken during the early and late stages of infection. To quickly screen for the "Y. pestis" antigen in patients, rapid dipstick tests have been developed for field use.
Samples taken for testing include:
- Buboes: Swollen lymph nodes (buboes) characteristic of bubonic plague, a fluid sample can be taken from them with a needle.
- Blood
- Lungs
Arsenic may be measured in blood or urine to monitor excessive environmental or occupational exposure, confirm a diagnosis of poisoning in hospitalized victims or to assist in the forensic investigation in a case of fatal over dosage. Some analytical techniques are capable of distinguishing organic from inorganic forms of the element. Organic arsenic compounds tend to be eliminated in the urine in unchanged form, while inorganic forms are largely converted to organic arsenic compounds in the body prior to urinary excretion. The current biological exposure index for U.S. workers of 35 µg/L total urinary arsenic may easily be exceeded by a healthy person eating a seafood meal.
Tests are available to diagnose poisoning by measuring arsenic in blood, urine, hair, and fingernails. The urine test is the most reliable test for arsenic exposure within the last few days. Urine testing needs to be done within 24–48 hours for an accurate analysis of an acute exposure. Tests on hair and fingernails can measure exposure to high levels of arsenic over the past 6–12 months. These tests can determine if one has been exposed to above-average levels of arsenic. They cannot predict, however, whether the arsenic levels in the body will affect health. Chronic arsenic exposure can remain in the body systems for a longer period of time than a shorter term or more isolated exposure and can be detected in a longer time frame after the introduction of the arsenic, important in trying to determine the source of the exposure.
Hair is a potential bioindicator for arsenic exposure due to its ability to store trace elements from blood. Incorporated elements maintain their position during growth of hair. Thus for a temporal estimation of exposure, an assay of hair composition needs to be carried out with a single hair which is not possible with older techniques requiring homogenization and dissolution of several strands of hair. This type of biomonitoring has been achieved with newer microanalytical techniques like Synchrotron radiation based X ray fluorescence (SXRF) spectroscopy and Microparticle induced X ray emission (PIXE).The highly focused and intense beams study small spots on biological samples allowing analysis to micro level along with the chemical speciation. In a study, this method has been used to follow arsenic level before, during and after treatment with Arsenious oxide in patients with Acute Promyelocytic Leukemia.
The disease can be fatal if left untreated, but endemic typhus is highly treatable with antibiotics. Most people recover fully, but death may occur in the elderly, severely disabled or patients with a depressed immune system. The most effective antibiotics include tetracycline and chloramphenicol. In United States, CDC recommends solely doxycycline.
Murine typhus (also called endemic typhus) is a form of typhus transmitted by fleas (Xenopsylla cheopis), usually on rats. (This is in contrast to epidemic typhus, which is usually transmitted by lice.) Murine typhus is an under-recognized entity, as it is often confused with viral illnesses. Most people who are infected do not realize that they have been bitten by fleas.