Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Dacryoadenitis can be diagnosed by examination of the eyes and lids. Special tests such as a CT scan may be required to search for the cause. Sometimes biopsy will be needed to be sure that a tumor of the lacrimal gland is not present.
Mumps can be prevented by immunization. Gonococcus, bacteria can be avoided by the use of condoms. Most other causes cannot be prevented.
A surgeon trained to do eyelid surgery, such as a plastic surgeon or ophthalmologist, is required to decide and perform the appropriate surgical procedure. The following procedures have been described for blepharochalasis:
- External levator aponeurosis tuck
- Blepharoplasty
- Lateral canthoplasty
- Dermis fat grafts
These are used to correct atrophic blepharochalasis after the syndrome has run its course.
Pterygium (conjunctiva) can be diagnosed without need for a specific exam, however corneal topography is a practical test (technique) as the condition worsens.
Conjunctival concretions can be seen easily by everting the eyelid. The projecting concretions should be removed. Removal is easily performed by a doctor. For example, using needles or sharp knife removes the concretion, under a local light anesthesia of the conjunctiva.
Not smoking is a common suggestion in the literature. Apart from smoking cessation, there is little definitive research in this area. In addition to the selenium studies above, some recent research also is suggestive that statin use may assist.
It is encountered more commonly in younger rather than older individuals.
NK is diagnosed on the basis of the patient's medical history and a careful examination of the eye and surrounding area.
With regard to the patient's medical history, special attention should be paid to any herpes virus infections and possible surgeries on the cornea, trauma, abuse of anaesthetics or chronic topical treatments, chemical burns or, use of contact lenses. It is also necessary to investigate the possible presence of diabetes or other systemic diseases such as multiple sclerosis.
The clinical examination is usually performed through a series of assessments and tools:
- General examination of cranial nerves, to determine the presence of nerve damage.
- Eye examinations:
1. Complete eye examination: examination of the eyelids, blink rate, presence of inflammatory reactions and secretions, corneal epithelial alterations.
2. Corneal sensitivity test: performed by placing a cotton wad or cotton thread in contact with the corneal surface: this only allows to determine whether corneal sensitivity is normal, reduced or absent; or using an esthesiometer that allows to assess corneal sensitivity.
3. Tear film function test, such as Schirmer's test, and tear film break-up time.
4. Fluorescein eye stain test, which shows any damage to the corneal and conjunctival epithelium
Graves' ophthalmopathy is diagnosed clinically by the presenting ocular signs and symptoms, but positive tests for antibodies (anti-thyroglobulin, anti-microsomal and anti-thyrotropin receptor) and abnormalities in thyroid hormones level (T3, T4, and TSH) help in supporting the diagnosis.
Orbital imaging is an interesting tool for the diagnosis of Graves' ophthalmopathy and is useful in monitoring patients for progression of the disease. It is, however, not warranted when the diagnosis can be established clinically. Ultrasonography may detect early Graves' orbitopathy in patients without clinical orbital findings. It is less reliable than the CT scan and magnetic resonance imaging (MRI), however, to assess the extraocular muscle involvement at the orbital apex, which may lead to blindness. Thus, CT scan or MRI is necessary when optic nerve involvement is suspected. On neuroimaging, the most characteristic findings are thick extraocular muscles with tendon sparing, usually bilateral, and proptosis.
Treatment usually consists of observation unless the patient has concern, there is pain, drainage, or other symptoms related to the lesion. Surgical removal of the affected gland would be recommended in those cases. Another treatment option would be aspiration, which can be repeated multiple times. This is commonly performed in those who are debilitated or in those whose benefit from surgery would be outweighed by the risks. Prognosis is usually good; rarely this condition may devolve into lymphoma, or could actually represent 'occult' lymphoma from the outset.
As it is associated with excessive sun or wind exposure, wearing protective sunglasses with side shields and/or wide brimmed hats and using artificial tears throughout the day may help prevent their formation or stop further growth. Surfers and other water-sport athletes should wear eye protection that blocks 100% of the UV rays from the water, as is often used by snow-sport athletes. Many of those who are at greatest risk of pterygium from work or play sun exposure do not understand the importance of protection.
The extent of inflammation that can occur in IgG4-ROD is well demonstrated on magnetic resonance imaging (MRI).
Infraorbital nerve enlargement (IONE) is considered to be a particularly suspicious sign of IgG4-ROD, but seems to occur only when inflammation is in direct contact with the infraorbital canal. IONE is defined as the infraorbital nerve diameter being greater than the optic nerve diameter in the coronal plane.
Diagnosis of epiphora is clinical by history presentation and observation of the lids. Fluorescein dye can be used to examine for punctal reflux by pressing on the canaliculi in which the clinician should note resistance of reflux as it irrigates through the punctum into the nose.
A pinguecula is one of the differential diagnoses for a limbal nodule. It may have an increased prevalence in Gaucher's disease.
Pingueculae may enlarge slowly over time, but are a benign condition, usually requiring no treatment. Artificial tears may help to relieve discomfort, if it occurs. If cosmesis is a concern, surgical excision is sometimes done. Occasionally, a pinguecula may become inflamed, a condition called pingueculitis. The cause of pingueculitis is unknown and there are no known infectious agents associated with it. If an inflamed pinguecula is causing discomfort or cosmetic concerns, it may be treated with an anti-inflammatory agent, such as prednisolone drops.
Evaluation is in the form of a dye disappearance test followed by irrigation test. By using this sequence (with modifications) as a guide, the physician can frequently streamline diagnostic testing.
Mild conjunctivochalasis can be asymptomatic and in such cases does not require treatment. Lubricating eye drops can be tried but do not often work.
If discomfort persists after standard dry eye treatment and anti-inflammatory therapy, surgery can be undertaken to remove the conjunctival folds and restore a smooth tear film. This conjunctivoplasty surgery to correct conjunctivochalasis typically involves resection of an ellipse-shaped segment of conjunctiva just inferior to the lower lid margin, and is usually followed either by suturing or amniotic membrane graft transplantation to close the wound.
The best imaging modality for idiopathic orbital inflammatory disease is contrast-enhanced thin section magnetic resonance with fat suppression. The best diagnostic clue is a poorly marginated, mass-like enhancing soft tissue involving any area of the orbit.
Overall, radiographic features for idiopathic orbital inflammatory syndrome vary widely. They include inflammation of the extraocular muscles (myositis) with tendinous involvement, orbital fat stranding, lacrimal gland inflammation and enlargement (dacryoadenitis), involvement of the optic sheath complex, uvea, and sclera, a focal intraorbital mass or even diffuse orbital involvement. Bone destruction and intracranial extension is rare, but has been reported. Depending on the area of involvement, IOI may be categorized as:
- Myositic
- Lacrimal
- Anterior – Involvement of the globe, retrobulbar orbit
- Diffuse – Multifocal intraconal involvement with or without an extraconal component
- Apical – Involving the orbital apex and with intracranial involvement
Tolosa–Hunt syndrome is a variant of orbital pseudotumor in which there is extension into the cavernous sinus through the superior orbital fissure. Another disease variant is Sclerosing pseudotumor, which more often presents bilaterally and may extend into the sinuses.
CT findings
In non-enhanced CT one may observe a lacrimal, extra-ocular muscle, or other orbital mass. It may be focal or infiltrative and will have poorly circumscribed soft tissue. In contrast-enhanced CT there is moderate diffuse irregularity and enhancement of the involved structures. A dynamic CT will show an attenuation increase in the late phase, contrary to lymphoma where there is an attenuation decrease. Bone CT will rarely show bone remodeling or erosion, as mentioned above.
MR findings
On MR examination there is hypointensity in T1 weighted imaging (WI), particularly in sclerosing disease. T1WI with contrast will show moderate to marked diffuse irregularity and enhancement of involved structures. T2 weighted imaging with fat suppression will show iso- or slight hyperintensity compared to muscle. There is also decreased signal intensity compared to most orbital lesions due to cellular infiltrate and fibrosis. In chronic disease or sclerosing variant, T2WI with FS will show hypointensity (due to fibrosis). Findings on STIR (Short T1 Inversion Recovery) are similar to those on T2WI FS. In Tolosa–Hunt syndrome, findings include enhancement and fullness of the anterior cavernous sinus and superior orbital fissure in T1WI with contrast, while MRA may show narrowing of cavernous sinus internal carotid artery (ICA).
Ultrasonographic findings
On grayscale ultrasound there is reduced reflectivity, regular internal echoes, and weak attenuation, in a way, similar to lymphoproliferative lesions.
The dye disappearance test (DDT) is useful for assessing the presence or absence of adequate lacrimal outflow, especially in unilateral cases. It is more heavily relied upon in children, in whom lacrimal irrigation is impossible without deep sedation. Using a drop of sterile 2% fluorescein solution or a moistened fluorescein strip, the examiner instills fluorescein into the conjunctival fornices of each eye and then observes the tear film, preferably with the cobalt blue filter of the slit lamp. Persistence of significant dye and, particularly asymmetric clearance of the dye from the tear meniscus over a 5-minute period indicate an obstruction. If the DDT result is normal, severe lacrimal drainage dysfunction is highly unlikely. Variations of the DDT are the Jones tests.
Blockage of the main parotid duct, or one of its branches, is often a primary cause of acute parotitis, with further inflammation secondary to bacterial superinfection. The blockage may be from a salivary stone, a mucous plug, or, more rarely, by a tumor, usually benign. Salivary stones (also called sialolithiasis, or salivary duct calculus) are mainly made of calcium, but do not indicate any kind of calcium disorder. Stones may be diagnosed via X-ray (with a success rate of about 80%), a computed tomography (CT) scan or Medical ultrasonography. Stones may be removed by manipulation in the doctor's office, or, in the worst cases, by surgery. Lithotripsy, also known as "shock wave" treatment, is best known for its use breaking up kidney stones. Lithotripsy can now be used on salivary stones as well. Ultrasound waves break up the stones, and the fragments flush out of the salivary duct.
There is a marked lymphoplasmacytic infiltration. Lymphoid follicles surround solid epithelial nests, giving rise to the 'epimyoepithelial islands', that are mainly composed of ductal cells with occasional myoepithelial cells. Excess hyaline basement membrane material is deposited between cells, and there is also acinar atrophy and destruction.
Ultrasounds can be used to diagnose anophthalmia during gestation. Due to the resolution of the ultrasound, however, it is hard to diagnose it until the second trimester. The earliest to detect anophthalmia this way is approximately 20 weeks. 3D and 4D ultrasounds have proven to be more accurate at viewing the fetus's eyes during pregnancy and are another alternative to the standard ultrasound.
Because the disorder often occurs in people with typical dry eye symptoms, it can be difficult to distinguish readily the discomfort caused by the dry eye from that directly related to the redundant conjunctiva.
According to Mackie's classification, neurotrophic keratitis can be divided into three stages based on severity:
1. "Stage I:" characterized by alterations of the corneal epithelium, which is dry and opaque, with superficial punctate keratopathy and corneal oedema. Long-lasting neurotrophic keratitis may also cause hyperplasia of the epithelium, stromal scarring and neovascularization of the cornea.
2. "Stage II:" characterized by development of epithelial defects, often in the area near the centre of the cornea.
3. "Stage III:" characterized by ulcers of the cornea accompanied by stromal oedema and/or melting that may result in corneal perforation.
Symptoms, if any, can be mild even in the presence of significant swelling or masses.
Lacrimal gland involvement may cause swelling of the upper eyelid, or proptosis if there is severe swelling. Other orbital masses or inflammation can result in visual disturbance (blurred vision, double vision, visual field impairment), restricted eye movements, pain or discomfort, numbness in the distribution of the supraorbital and/or infraorbital nerves, or proptosis.
IgG4-related ophthalmic disease has been estimated to account for approximately 25% of all cases of proptosis, eyelid swelling and other features of orbital swelling.