Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Because this genetic anomaly is genetically linked, genetic counseling may be the only way to decrease occurrences of Cherubism. The lack of severe symptoms in the parents may be the cause of failure in recognizing the disorder. The optimal time to be tested for mutations is prior to having children. The disorder results from a genetic mutation, and this gene has been found to spontaneously mutate. Therefore, there may be no prevention techniques available.
Due to the wide range of genetic disorders that are presently known, diagnosis of a genetic disorder is widely varied and dependent of the disorder. Most genetic disorders are diagnosed at birth or during early childhood, however some, such as Huntington's disease, can escape detection until the patient is well into adulthood.
The basic aspects of a genetic disorder rests on the inheritance of genetic material. With an in depth family history, it is possible to anticipate possible disorders in children which direct medical professionals to specific tests depending on the disorder and allow parents the chance to prepare for potential lifestyle changes, anticipate the possibility of stillbirth, or contemplate termination. Prenatal diagnosis can detect the presence of characteristic abnormalities in fetal development through ultrasound, or detect the presence of characteristic substances via invasive procedures which involve inserting probes or needles into the uterus such as in amniocentesis.
A thorough diagnosis should be performed on every affected individual, and siblings should be studied for deafness, parathyroid and renal disease. The syndrome should be considered in infants who have been diagnosed prenatally with a chromosome 10p defect, and those who have been diagnosed with well defined phenotypes of urinary tract abnormalities. Management consists of treating the clinical abnormalities at the time of presentation. Prognosis depends on the severity of the kidney disease.
Diagnosis is mainly based on clinical features. However, biopsy has been useful in diagnosis as well as in differentiating between the different types of the disease.
Not all genetic disorders directly result in death, however there are no known cures for genetic disorders. Many genetic disorders affect stages of development such as Down syndrome. While others result in purely physical symptoms such as muscular dystrophy. Other disorders, such as Huntington's disease show no signs until adulthood. During the active time of a genetic disorder, patients mostly rely on maintaining or slowing the degradation of quality of life and maintain patient autonomy. This includes physical therapy, pain management, and may include a selection of alternative medicine programs.
The chemical imbalance is usually diagnosed when dental abnormalities are found. These abnormalities include premature deciduous teeth and abnormal growth of permanent teeth due to displacement by cysts and lesions. The only definite way to correctly diagnose the condition is by sequence analysis of the SH3BP2 gene. The gene has been found to have missense mutation in exon 9. Initial study of the patient is usually conducted using x-ray and CT scans. Neurofibromatosis may resemble Cherubism and may accompany the condition. Genetic testing is the final diagnosis tool.
The frequency is unknown, but the disease is considered to be very rare.
The diagnosis of HPS is established by clinical findings of hypopigmentation
of the skin and hair, characteristic eye findings, and demonstration of absent
dense bodies on whole mount electron microscopy of platelets. Molecular
genetic testing of the HPS1 gene is available on a clinical basis for
individuals from northwestern Puerto Rico. Molecular testing of the HPS3 gene
is available on a clinical basis for individuals of central Puerto Rican or
Ashkenazi Jewish heritage. Sequence analysis is available on a clinical basis
for mutations in HPS1 and HPS4. Diagnosis of individuals with other types of
HPS is available on a research basis only.
A physician often can diagnose ichthyosis by looking at the skin. A family history is very useful. In some cases, a skin biopsy is done to help to confirm the diagnosis. In some instances, genetic testing may be helpful in making a diagnosis. Diabetes has not been definitively linked to acquired ichthyosis or ichthyosis vulgaris; however, there are case reports associating new onset ichthyosis with diabetes.
Ichthyosis has been found to be more common in Native American, Asian, Mongolian groups. There is no way to prevent ichthyosis.
Ichthyosis is a genetically and phenotypically heterogeneous disease that can be isolated and restricted to the skin manifestations or associated with extracutaneous symptoms. One of which is limb reduction defect known as CHILD syndrome; a rare inborn error of metabolism of cholesterol biosynthesis that is usually restricted to one side of the body. A research done in Egypt proved that it is not a child syndrome and discussed all the case report.
As with most genetic diseases there is no way to prevent the entire disease. With prompt recognition and treatment of infections in childhood, the complications of low white blood cell counts may be limited.
No pathognomonic clinical signs for TSC complex are seen. Many signs are present in individuals who are healthy (although rarely), or who have another disease. In order to meet diagnostic criteria for TSC complex, an individual must either have: 1) Two or more major criteria; or 2) One major criterion along with two or more minor criteria.
In infants, the first clue is often the presence of seizures, delayed development, or white patches on the skin. A full clinical diagnosis involves:
- Taking a personal and family history
- Examining the skin under a Wood's lamp (hypomelanotic macules), the fingers and toes (ungual fibroma), the face (angiofibromas), and the mouth (dental pits and gingival fibromas)
- Cranial imaging with nonenhanced CT or, preferably, MRI (cortical tubers and subependymal nodules)
- Renal ultrasound (angiomyolipoma or cysts)
- An echocardiogram in infants (rhabdomyoma)
- Fundoscopy (retinal nodular hamartomas or achromic patch)
The various signs are then marked against the diagnostic criteria to produce a level of diagnostic certainty:
- Definite – either two major features or one major feature plus two minor features
- Probable – one major plus one minor feature
- Suspect – either one major feature or two or more minor features
Due to the wide variety of mutations leading to TSC, no simple genetic tests are available to identify new cases, nor are any biochemical markers known for the gene defects. However, once a person has been clinically diagnosed, the genetic mutation can usually be found. The search is time-consuming and has a 15% failure rate, which is thought to be due to somatic mosaicism. If successful, this information can be used to identify affected family members, including prenatal diagnosis. , preimplantation diagnosis is not widely available.
A 2007 study followed 112 individuals for a mean of 12 years (mean age 25.3, range 12–71). No patient died during follow-up, but several required medical interventions. The mean final heights were 167 and 153 cm for men and women, respectively, which is approximately 2 standard deviations below normal.
Opitz G/BBB Syndrome is a rare genetic condition caused by one of two major types of mutations: MID1 mutation on the short (p) arm of the X chromosome or a mutation of the 22q11.2 gene on the 22nd chromosome. Since it is a genetic disease, it is an inherited condition. However, there is an extremely wide variability in how the disease presents itself.
In terms of prevention, several researchers strongly suggest prenatal testing for at-risk pregnancies if a MID1 mutation has been identified in a family member. Doctors can perform a fetal sex test through chromosome analysis and then screen the DNA for any mutations causing the disease. Knowing that a child may be born with Opitz G/BBB syndrome could help physicians prepare for the child’s needs and the family prepare emotionally. Furthermore, genetic counseling for young adults that are affected, are carriers or are at risk of carrying is strongly suggested, as well (Meroni, Opitz G/BBB syndrome, 2012). Current research suggests that the cause is genetic and no known environmental risk factors have been documented. The only education for prevention suggested is genetic testing for at-risk young adults when a mutation is found or suspected in a family member.
Diagnosis is based on appearance and family history. KID syndrome or keratosis follicularis spinulosa decalvans have some similar symptoms and must be eliminated.
HPS is one of the rare lung diseases currently being studied by The Rare Lung Diseases Consortium (RLDC). The RLDC is part of the Rare Diseases Clinical Research Network (RDCRN), an initiative of the Office of Rare Diseases Research (ORDR), of the National Center for Advancing Translational Sciences (NCATS). The RLDC is dedicated to developing new diagnostics and therapeutics for patients with rare lung diseases, through collaboration between the NIH, patient organizations and clinical investigators.
First trimester ultrasound of noonan syndrome reveals nuchal oedema / cystic hygroma almost same as seen in Turner syndrome. Follow up scans may shows clinical features that already described above.
A study shows this disease is also associated with hepato splenomegaly with renal anomalies including malrotation and solitary kidney. A rare incidence of choledochal cyst is also reported as well.
Because the variability of this disease is so great and the way that it reveals itself could be multi-faceted; once diagnosed, a multidisciplinary team is recommended to treat the disease and should include a craniofacial surgeon, ophthalmologist, pediatrician, pediatric urologist, cardiologist, pulmonologist, speech pathologist, and a medical geneticist. Several important steps must be followed, as well.
- Past medical history
- Physical examination with special attention to size and measurements of facial features, palate, heart, genitourinary system and lower respiratory system
- Eye evaluation
- Hypospadias assessment by urologist
- Laryngoscopy and chest x-ray for difficulties with breathing/swallowing
- Cleft lip/palate assessment by craniofacial surgeon
- Assessment of standard age developmental and intellectual abilities
- Anal position assessment
- Echocardiogram
- Cranial imaging
Many surgical repairs may be needed, as assessed by professionals. Furthermore, special education therapies and psychoemotional therapies may be required, as well. In some cases, antireflux drugs can be prescribed until risk of breathing and swallowing disorders are removed. Genetic counseling is highly advised to help explain who else in the family may be at risk for the disease and to help guide family planning decisions in the future.
Because of its wide variability in which defects will occur, there is no known mortality rate specifically for the disease. However, the leading cause of death for people with Opitz G/BBB syndrome is due to infant death caused by aspiration due to esophageal, pharyngeal or laryngeal defects.
Fortunately, to date there are no factors that can increase the expression of symptoms of this disease. All abnormalities and symptoms are present at birth.
There is no causative / curative therapy. Symptomatic medical treatments are focussing on symptoms caused by orthopaedic, dental or cardiac problems. Regarding perioperative / anesthesiological management, recommendations for medical professionals are published at OrphanAnesthesia.
Treatment is symptomatic and may include nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids to reduce swelling, antibiotics and immunosuppressants. Surgery may be indicated to relieve pressure on the facial nerves and reduce swelling, but its efficacy is uncertain. Massage and electrical stimulation may also be prescribed.
Prevention for Alström Syndrome is considered to be harder compared to other diseases/syndromes because it is an inherited condition. However, there are other options that are available for parents with a family history of Alström Syndrome. Genetic testing and counseling are available where individuals are able to meet with a genetic counselor to discuss risks of having the children with the disease. The genetic counselor may also help determine whether individuals carry the defective ALSM1 gene before the individuals conceive a child. Some of the tests the genetic counselors perform include chorionic villus sampling (CVS), Preimplantation genetic diagnosis (PGD), and amniocentesis. With PGD, the embryos are tested for the ALSM1 gene and only the embryos that are not affected may be chosen for implantation via in vitro fertilization.
In terms of the diagnosis of arterial tortuosity syndrome can be done via genetic testing, as well as the following listed below:
- CT
- MRI
- Echocardiogram
- Physical exam(for specific characteristics)
The treatment of arterial tortuosity syndrome entails possible surgery for aortic aneurysms, as well as, follow ups which should consist of EGC. The prognosis of this condition has it at about 12% mortality
Norrie disease and other NDP related diseases are diagnosed with the combination of clinical findings and molecular genetic testing. Molecular genetic testing identifies the mutations that cause the disease in about 85% of affected males. Clinical diagnoses rely on ocular findings. Norrie disease is diagnosed when grayish-yellow fibrovascular masses are found behind the eye from birth through three months. Doctors also look for progression of the disease from three months through 8–10 years of age. Some of these progressions include cataracts, iris atrophy, shallowing of anterior chamber, and shrinking of the globe. By this point, people with the condition either have only light perception or no vision at all.
Molecular genetic testing is used for more than an initial diagnosis. It is used to confirm diagnostic testing, for carrier testing females, prenatal diagnosis, and preimplantation genetic diagnosis. There are three types of clinical molecular genetic testing. In approximately 85% of males, mis-sense and splice mutations of the NDP gene and partial or whole gene deletions are detected using sequence analysis. Deletion/duplication analysis can be used to detect the 15% of mutations that are submicroscopic deletions. This is also used when testing for carrier females. The last testing used is linkage analysis, which is used when the first two are unavailable. Linkage analysis is also recommended for those families who have more than one member affected by the disease.
On MRI the retinal dysplasia that occurs with the syndrome can be indistinguishable from persistent hyperplastic primary vitreous, or the dysplasia of trisomy 13 and Walker–Warburg syndrome.
Because CAPS is extremely rare and has a broad clinical presentation, it is difficult to diagnose, and a significant delay exists between symptom onset and definitive diagnosis. There are currently no clinical or diagnostic criteria for CAPS based solely on clinical presentation. Instead, diagnosis is made by genetic testing for "NLRP3" mutations. Acute phase reactants and white blood cell count are usually persistently elevated, but this is aspecific for CAPS.
It is possible to clinically detect Alström syndrome in infancy, but more frequently, it is detected much later, as doctors tend to detect symptoms as separate problems. Currently, Alström syndrome is often diagnosed clinically, since genetic testing is costly and only available on a limited basis.
A physical examination would be needed to properly diagnose the patient. Certain physical characteristics can determine if the patient has some type of genetic disorder. Usually, a geneticist would perform the physical examination by measuring the distance around the head, distance between the eyes, and the length of arms and legs. In addition, examinations for the nervous system or the eyes may be performed. Various imaging studies like computerized tomography scans (CT), Magnetic Resonance Imaging (MRI), or X-rays are used to see the structures within the body.
Family and personal medical history are required. Information about the health of an individual is crucial because it provides traces to a genetic diagnosis.
Laboratory tests, particularly genetic testing, are performed to diagnose genetic disorders. Some of the types of genetic testing are molecular, biochemical, and chromosomal. Other laboratory tests performed may measure levels of certain substances in urine and blood that can also help suggest a diagnosis.