Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Norrie disease and other NDP related diseases are diagnosed with the combination of clinical findings and molecular genetic testing. Molecular genetic testing identifies the mutations that cause the disease in about 85% of affected males. Clinical diagnoses rely on ocular findings. Norrie disease is diagnosed when grayish-yellow fibrovascular masses are found behind the eye from birth through three months. Doctors also look for progression of the disease from three months through 8–10 years of age. Some of these progressions include cataracts, iris atrophy, shallowing of anterior chamber, and shrinking of the globe. By this point, people with the condition either have only light perception or no vision at all.
Molecular genetic testing is used for more than an initial diagnosis. It is used to confirm diagnostic testing, for carrier testing females, prenatal diagnosis, and preimplantation genetic diagnosis. There are three types of clinical molecular genetic testing. In approximately 85% of males, mis-sense and splice mutations of the NDP gene and partial or whole gene deletions are detected using sequence analysis. Deletion/duplication analysis can be used to detect the 15% of mutations that are submicroscopic deletions. This is also used when testing for carrier females. The last testing used is linkage analysis, which is used when the first two are unavailable. Linkage analysis is also recommended for those families who have more than one member affected by the disease.
On MRI the retinal dysplasia that occurs with the syndrome can be indistinguishable from persistent hyperplastic primary vitreous, or the dysplasia of trisomy 13 and Walker–Warburg syndrome.
An accurate diagnosis of retinitis pigmentosa relies on the documentation of the progressive loss photoreceptor cell function, confirmed by a combination of visual field and visual acuity tests, fundus and optical coherence imagery, and electroretinography (ERG),
Visual field and acuity tests measure and compare the size of the patient's field of vision and the clarity of their visual perception with the standard visual measurements associated with healthy 20/20 vision. Clinical diagnostic features indicative of retinitis pigmentosa include a substantially small and progressively decreasing visual area in the visual field test, and compromised levels of clarity measured during the visual acuity test. Additionally, optical tomography such as fundus and retinal (optical coherence) imagery provide further diagnostic tools when determining an RP diagnosis. Photographing the back of the dilated eye allows the confirmation of bone spicule accumulation in the fundus, which presents during the later stages of RP retinal degeneration. Combined with cross-sectional imagery of optical coherence tomography, which provides clues into photoreceptor thickness, retinal layer morphology, and retinal pigment epithelium physiology, fundus imagery can help determine the state of RP progression.
While visual field and acuity test results combined with retinal imagery support the diagnosis of retinitis pigmentosa, additional testing is necessary to confirm other pathological features of this disease. Electroretinography (ERG) confirms the RP diagnosis by evaluating functional aspects associated with photoreceptor degeneration, and can detect physiological abnormalities before the initial manifestation of symptoms. An electrode lens is applied to the eye as photoreceptor response to varying degrees of quick light pulses is measured. Patients exhibiting the retinitis pigmentosa phenotype would show decreased or delayed electrical response in the rod photoreceptors, as well as possibly compromised cone photoreceptor cell response.
The patient's family history is also considered when determining a diagnosis due to the genetic mode of inheritance of retinitis pigmentosa. At least 35 different genes or loci are known to cause "nonsyndromic RP" (RP that is not the result of another disease or part of a wider syndrome). Indications of the RP mutation type can be determine through DNA testing, which is available on a clinical basis for:
- (autosomal recessive, Bothnia type RP)
- (autosomal dominant, RP1)
- (autosomal dominant, RP4)
- (autosomal dominant, RP7)
- (autosomal dominant, RP13)
- (autosomal dominant, RP18)
- CRB1 (autosomal recessive, RP12)
- (autosomal recessive, RP19)
- (autosomal recessive, RP20)
For all other genes (e.g. DHDDS), molecular genetic testing is available on a research basis only.
RP can be inherited in an autosomal dominant, autosomal recessive, or X-linked manner. X-linked RP can be either recessive, affecting primarily only males, or dominant, affecting both males and females, although males are usually more mildly affected. Some digenic (controlled by two genes) and mitochondrial forms have also been described.
Genetic counseling depends on an accurate diagnosis, determination of the mode of inheritance in each family, and results of molecular genetic testing.
Genetic tests and related research are currently being performed at Centogene AG in Rostock, Germany; John and Marcia Carver Nonprofit Genetic Testing Laboratory in Iowa City, IA; GENESIS Center for Medical Genetics in Poznan, Poland; Miraca Genetics Laboratories in Houston, TX; Asper Biotech in Tartu, Estonia; CGC Genetics in Porto, Portugal; CEN4GEN Institute for Genomics and Molecular Diagnostics in Edmonton, Canada; and Reference Laboratory Genetics - Barcelona, Spain.
A diagnosis of choroideremia can be made based on family history, symptoms, and the characteristic appearance of the fundus. However, choroideremia shares several clinical features with retinitis pigmentosa, a similar but broader group of retinal degenerative diseases, making a specific diagnosis difficult without genetic testing. Because of this choroideremia is often initially misdiagnosed as retinitis pigmentosa. A variety of different genetic testing techniques can be used to make a differential diagnosis.
Physicians, specifically ophthalmologists, can examine the child and give a correct diagnosis. Some will do molecular genetics tests to see if the cause is linked with gene mutations.
Ultrasounds can be used to diagnose anophthalmia during gestation. Due to the resolution of the ultrasound, however, it is hard to diagnose it until the second trimester. The earliest to detect anophthalmia this way is approximately 20 weeks. 3D and 4D ultrasounds have proven to be more accurate at viewing the fetus's eyes during pregnancy and are another alternative to the standard ultrasound.
This may be present in conditions causing traction on the retina especially at the macula. This may occur in:
a) The vitreomacular traction syndrome; b) Proliferative diabetic retinopathy with vitreoretinal traction; c) Atypical cases of impending macular hole.
The clinical diagnosis is backed up by investigative findings. Citrulline level in blood is decreased. Mitochondrial studies or NARP mtDNA evaluation plays a role in genetic diagnosis which can also be done prenatally.
Molecular (DNA) testing for PAX6 gene mutations (by sequencing of the entire coding region and deletion/duplication analysis) is available for isolated aniridia and the Gillespie syndrome. For the WAGR syndrome, high-resolution cytogenetic analysis and fluorescence in situ hybridization (FISH) can be utilized to identify deletions within chromosome band 11p13, where both the PAX6 and WT1 genes are located.
One form of LCA, patients with LCA2 bearing a mutation in the RPE65 gene, has been successfully treated in clinical trials using gene therapy. The results of three early clinical trials were published in 2008 demonstrating the safety and efficacy of using adeno-associated virus to deliver gene therapy to restore vision in LCA patients. In all three clinical trials, patients recovered functional vision without apparent side-effects. These studies, which used adeno-associated virus, have spawned a number of new studies investigating gene therapy for human retinal disease.
The results of a phase 1 trial conducted by the University of Pennsylvania and Children’s Hospital of Philadelphia and published in 2009 showed sustained improvement in 12 subjects (ages 8 to 44) with RPE65-associated LCA after treatment with AAV2-hRPE65v2, a gene replacement therapy. Early intervention was associated with better results. In that study, patients were excluded based on the presence of particular antibodies to the vector AAV2 and treatment was only administered to one eye as a precaution. A 2010 study testing the effect of administration of AAV2-hRPE65v2 in both eyes in animals with antibodies present suggested that immune responses may not complicate use of the treatment in both eyes.
Eye Surgeon Dr. Al Maguire and gene therapy expert Dr. Jean Bennett developed the technique used by the Children's Hospital.
Dr. Sue Semple-Rowland at the University of Florida has recently restored sight in an avian model using gene therapy.
Retinitis pigmentosa is the leading cause of inherited blindness, with approximately 1/4,000 individuals experiencing the non-syndromic form of their disease within their lifetime. It is estimated that 1.5 million people worldwide are currently affected. Early onset RP occurs within the first few years of life and is typically associated with syndromic disease forms, while late onset RP emerges from early to mid-adulthood.
Autosomal dominant and recessive forms of retinitis pigmentosa affect both male and female populations equally; however, the less frequent X-linked form of the disease affects male recipients of the X-linked mutation, while females usually remain unaffected carriers of the RP trait. The X-linked forms of the disease are considered severe, and typically lead to complete blindness during later stages. In rare occasions, a dominant form of the X-linked gene mutation will affect both males and females equally.
Due to the genetic inheritance patterns of RP, many isolate populations exhibit higher disease frequencies or increased prevalence of a specific RP mutation. Pre-existing or emerging mutations that contribute to rod photoreceptor degeneration in retinitis pigmentosa are passed down through familial lines; thus, allowing certain RP cases to be concentrated to specific geographical regions with an ancestral history of the disease. Several hereditary studies have been performed to determine the varying prevalence rates in Maine (USA), Birmingham (England), Switzerland (affects 1/7000), Denmark (affects 1/2500), and Norway. Navajo Indians display an elevated rate of RP inheritance as well, which is estimated as affecting 1 in 1878 individuals. Despite the increased frequency of RP within specific familial lines, the disease is considered non-discriminatory and tends to equally affect all world populations.
Retinoschisis involving the central part of the retina secondary to an optic disc pit was erroneously considered to be a serous retinal detachment until correctly described by Lincoff as retinoschisis. Significant visual loss may occur and following a period of observation for spontaneous resolution, treatment with temporal peripapillary laser photocoagulation followed by vitrectomy and gas injection followed by face-down positioning is very effective in treating this condition.
PEX is usually diagnosed by an eye doctor who examines the eye using a microscope. The method is termed slit lamp examination and it is done with an "85% sensitivity rate and a 100% specificity rate." Since the symptom of increased pressure within the eye is generally painless until the condition becomes rather advanced, it is possible for people afflicted with glaucoma to be in danger yet not be aware of it. As a result, it is recommended that persons have regular eye examinations to have their levels of intraocular pressure measured, so that treatments can be prescribed before there is any serious damage to the optic nerve and subsequent loss of vision.
While nothing currently can be done to stop or reverse the retinal degeneration, there are steps that can be taken to slow the rate of vision loss. UV-blocking sunglasses for outdoors, appropriate dietary intake of fresh fruit and leafy green vegetables, antioxidant vitamin supplements, and regular intake of dietary omega-3 very-long-chain fatty acids are all recommended.
One study found that a dietary supplement of lutein increases macular pigment levels in patients with choroideremia. Over a long period of time, these elevated levels of pigmentation could slow retinal degeneration. Additional interventions that may be needed include surgical correction of retinal detachment and cataracts, low vision services, and counseling to help cope with depression, loss of independence, and anxiety over job loss.
Prior to any physical examination, the diagnosis of keratoconus frequently begins with an ophthalmologist's or optometrist's assessment of the person's medical history, particularly the chief complaint and other visual symptoms, the presence of any history of ocular disease or injury which might affect vision, and the presence of any family history of ocular disease. An eye chart, such as a standard Snellen chart of progressively smaller letters, is then used to determine the person's visual acuity. The eye examination may proceed to measurement of the localized curvature of the cornea with a manual keratometer, with detection of irregular astigmatism suggesting a possibility of keratoconus. Severe cases can exceed the instrument's measuring ability. A further indication can be provided by retinoscopy, in which a light beam is focused on the person's retina and the reflection, or reflex, observed as the examiner tilts the light source back and forth. Keratoconus is amongst the ophthalmic conditions that exhibit a scissor reflex action of two bands moving toward and away from each other like the blades of a pair of scissors.
If keratoconus is suspected, the ophthalmologist or optometrist will search for other characteristic findings of the disease by means of slit lamp examination of the cornea. An advanced case is usually readily apparent to the examiner, and can provide for an unambiguous diagnosis prior to more specialized testing. Under close examination, a ring of yellow-brown to olive-green pigmentation known as a Fleischer ring can be observed in around half of keratoconic eyes. The Fleischer ring, caused by deposition of the iron oxide hemosiderin within the corneal epithelium, is subtle and may not be readily detectable in all cases, but becomes more evident when viewed under a cobalt blue filter. Similarly, around 50% of subjects exhibit Vogt's striae, fine stress lines within the cornea caused by stretching and thinning. The striae temporarily disappear while slight pressure is applied to the eyeball. A highly pronounced cone can create a V-shaped indentation in the lower eyelid when the person's gaze is directed downwards, known as Munson's sign. Other clinical signs of keratoconus will normally have presented themselves long before Munson's sign becomes apparent, and so this finding, though a classic sign of the disease, tends not to be of primary diagnostic importance.
A handheld keratoscope, sometimes known as "Placido's disk", can provide a simple noninvasive visualization of the surface of the cornea by projecting a series of concentric rings of light onto the cornea. A more definitive diagnosis can be obtained using corneal topography, in which an automated instrument projects the illuminated pattern onto the cornea and determines its topography from analysis of the digital image. The topographical map indicates any distortions or scarring in the cornea, with keratoconus revealed by a characteristic steepening of curvature which is usually below the centreline of the eye. The technique can record a snapshot of the degree and extent of the deformation as a benchmark for assessing its rate of progression. It is of particular value in detecting the disorder in its early stages when other signs have not yet presented.
The severity and prognosis vary with the type of mutation involved.
Once keratoconus has been diagnosed, its degree may be classified by several metrics:
- The steepness of greatest curvature from 'mild' ( 52 D);
- The morphology of the cone: 'nipple' (small: 5 mm and near-central), 'oval' (larger, below-center and often sagging), or 'globus' (more than 75% of cornea affected);
- The corneal thickness from mild (> 506 μm) to advanced (< 446 μm).
Increasing use of corneal topography has led to a decline in use of these terms.
Based on the presence of extraocular findings, such as neurological, auditory and integumentary manifestations, the "revised diagnostic criteria" of 2001 classify the disease as complete (eyes along with both neurological and skin), incomplete (eyes along with either neurological or skin) or probable (eyes without either neurological or skin) . By definition, for research homogeneity purposes, there are two exclusion criteria: previous ocular penetrating trauma or surgery, and other concomitant ocular disease similar to VKH disease.
Diagnosis is made when several characteristic clinical signs are observed. There is no single test to confirm the presence of Weill–Marchesani syndrome. Exploring family history or examining other family members may prove helpful in confirming this diagnosis.
Although most recognized for its correlation with the onset of glaucoma, the malformation is not limited to the eye, as Axenfeld syndrome when associated with the PITX2 genetic mutation usually presents congenital malformations of the face, teeth, and skeletal system.
The most characteristic feature affecting the eye is a distinct corneal posterior arcuate ring, known as an "embryotoxon". The iris is commonly adherent to the Schwalbe's line (posterior surface of the cornea).
Diagnosis
One of the three known genetic mutations which cause Rieger Syndrome can be identified through genetic samples analysis. About 40% of Axenfeld-Rieger sufferers have displayed mutations in genes PITX2, FOXC1, and PAX6. The difference between Type 1, 2, and 3 Axenfeld Syndrome is the genetic cause, all three types display the same symptoms and abnormalities.
The OMIM classification is as follows:
Detection of any of these mutations can give patients a clear diagnosis and prenatal procedures such as preimplantation genetic diagnosis, Chorionic villus sampling and Amniocentesis can be offered to patients and prospective parents.
CNV can be detected by using a type of perimetry called preferential hyperacuity perimetry. On the basis of fluorescein angiography, CNV may be described as classic or occult. Two other tests that help identify the condition include indocyanine green angiography and optical coherence tomography.
Norrie disease is a genetic disorder that primarily affects the eye and almost always leads to blindness. In addition to the congenital ocular symptoms, some patients suffer from a progressive hearing loss starting mostly in their 2nd decade of life, and some may have learning difficulties.
Patients with Norrie disease may develop cataracts, leukocoria (a condition where the pupils appear white when light is shone on them), along with other developmental issues in the eye, such as shrinking of the globe and the wasting away of the iris. Around 30 to 50% of them will also have developmental delay/learning difficulties, psychotic-like features, incoordination of movements or behavioral abnormalities. Most patients are born with normal hearing; however, the onset of hearing loss is very common in early adolescence. About 15% of patients are estimated to develop all the features of the disease.
The disease affects almost only male infants, because the disease is inherited X-linked recessive. Only in very rare cases, females have been diagnosed with Norrie disease as well. The exact incidence number is unknown; only a few hundred cases have been reported. It is a very rare disorder that is not associated with any specific ethnic or racial groups.
If tested in the prodromal phase, CSF pleocytosis is found in more than 80%, mainly lymphocytes. This pleocytosis resolves in about 8 weeks even if chronic uveitis persists.
Functional tests may include electroretinogram and visual field testing. Diagnostic confirmation and an estimation of disease severity may involve imaging tests such as retinography, fluorescein or indocyanine green angiography, optical coherence tomography and ultrasound. For example, indocyanine green angiography may detect continuing choroidal inflammation in the eyes without clinical symptoms or signs. Ocular MRI may be helpful and auditory symptoms should undergo audiologic testing. Histopathology findings from eye and skin are discussed by Walton.
The diagnosis of VKH is based on the clinical presentation; the diagnostic differential is extensive, and includes (almong others) sympathetic ophthalmia, sarcoidosis, primary intraocular B-cell lymphoma, posterior scleritis, uveal effusion syndrome, tuberculosis, syphilis, and multifocal choroidopathy syndromes.
Retinal dysplasia is an eye disease affecting the retina of animals and, less commonly, humans. It is usually a nonprogressive disease and can be caused by viral infections, drugs, vitamin A deficiency, or genetic defects. Retinal dysplasia is characterized by folds or rosettes (round clumps) of the retinal tissue.
Scientists are studying different populations and relationships to try to learn more about the disease. They have found associations with different groups but it is not yet clear what the underlying factors are and how they affect different peoples around the world.
- Glaucoma patients. While PEX and glaucoma are believed to be related, there are cases of persons with PEX without glaucoma, and persons with glaucoma without PEX. Generally, a person with PEX is considered as having a risk of developing glaucoma, and vice versa. One study suggested that the PEX was present in 12% of glaucoma patients. Another found that PEX was present in 6% of an "open-angle glaucoma" group. Pseudoexfoliation syndrome is considered to be the most common of identifiable causes of glaucoma. If PEX is diagnosed without glaucoma, there is a high risk of a patient subsequently developing glaucoma.
- Country and region. Prevalence of PEX varies by geography. In Europe, differing levels of PEX were found; 5% in England, 6% in Norway, 4% in Germany, 1% in Greece, and 6% in France. One contrary report suggested that levels of PEX were higher among Greek people. One study of a county in Minnesota found that the prevalence of PEX was 25.9 cases per 100,000 people. It is reportedly high in northern European countries such as Norway, Sweden and Finland, as well as among the Sami people of northern Europe, and high among Arabic populations, but relatively rare among African Americans and Eskimos. In southern Africa, prevalence was found to be 19% of patients in a glaucoma clinic attending to persons of the Bantu tribes.
- Race. It varies considerably according to race.
- Gender. It affects women more than men. One report was that women were three times more likely than men to develop PEX.
- Age. Older persons are more likely to develop PEX. And persons younger than 50 are highly unlikely to have PEX. A study in Norway found that the prevalence of PEX of persons aged 50–59 was 0.4% while it was 7.9% for persons aged 80–89 years. If a person is going to develop PEX, the average age in which this will happen is between 69 and 75 years, according to the Norwegian study. A second corroborating report suggested that it happens primarily to people 70 and older. While older people are more likely to develop PEX, it is not seen as a "normal" part of aging.
- Other diseases. Sometimes PEX is associated with the development of medical problems other than merely glaucoma. There are conflicting reports about whether PEX is associated with problems of the heart or brain; one study suggested no correlations while other studies found statistical links with Alzheimer's disease, senile dementia, cerebral atrophy, chronic cerebral ischemia, stroke, transient ischemic attacks, heart disease, and hearing loss.