Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Prior to any physical examination, the diagnosis of keratoconus frequently begins with an ophthalmologist's or optometrist's assessment of the person's medical history, particularly the chief complaint and other visual symptoms, the presence of any history of ocular disease or injury which might affect vision, and the presence of any family history of ocular disease. An eye chart, such as a standard Snellen chart of progressively smaller letters, is then used to determine the person's visual acuity. The eye examination may proceed to measurement of the localized curvature of the cornea with a manual keratometer, with detection of irregular astigmatism suggesting a possibility of keratoconus. Severe cases can exceed the instrument's measuring ability. A further indication can be provided by retinoscopy, in which a light beam is focused on the person's retina and the reflection, or reflex, observed as the examiner tilts the light source back and forth. Keratoconus is amongst the ophthalmic conditions that exhibit a scissor reflex action of two bands moving toward and away from each other like the blades of a pair of scissors.
If keratoconus is suspected, the ophthalmologist or optometrist will search for other characteristic findings of the disease by means of slit lamp examination of the cornea. An advanced case is usually readily apparent to the examiner, and can provide for an unambiguous diagnosis prior to more specialized testing. Under close examination, a ring of yellow-brown to olive-green pigmentation known as a Fleischer ring can be observed in around half of keratoconic eyes. The Fleischer ring, caused by deposition of the iron oxide hemosiderin within the corneal epithelium, is subtle and may not be readily detectable in all cases, but becomes more evident when viewed under a cobalt blue filter. Similarly, around 50% of subjects exhibit Vogt's striae, fine stress lines within the cornea caused by stretching and thinning. The striae temporarily disappear while slight pressure is applied to the eyeball. A highly pronounced cone can create a V-shaped indentation in the lower eyelid when the person's gaze is directed downwards, known as Munson's sign. Other clinical signs of keratoconus will normally have presented themselves long before Munson's sign becomes apparent, and so this finding, though a classic sign of the disease, tends not to be of primary diagnostic importance.
A handheld keratoscope, sometimes known as "Placido's disk", can provide a simple noninvasive visualization of the surface of the cornea by projecting a series of concentric rings of light onto the cornea. A more definitive diagnosis can be obtained using corneal topography, in which an automated instrument projects the illuminated pattern onto the cornea and determines its topography from analysis of the digital image. The topographical map indicates any distortions or scarring in the cornea, with keratoconus revealed by a characteristic steepening of curvature which is usually below the centreline of the eye. The technique can record a snapshot of the degree and extent of the deformation as a benchmark for assessing its rate of progression. It is of particular value in detecting the disorder in its early stages when other signs have not yet presented.
Intraocular pressure should be measured as part of the routine eye examination.
It is usually only elevated by iridocyclitis or acute-closure glaucoma, but not by relatively benign conditions.
In iritis and traumatic perforating ocular injuries, the intraocular pressure is usually low.
Once keratoconus has been diagnosed, its degree may be classified by several metrics:
- The steepness of greatest curvature from 'mild' ( 52 D);
- The morphology of the cone: 'nipple' (small: 5 mm and near-central), 'oval' (larger, below-center and often sagging), or 'globus' (more than 75% of cornea affected);
- The corneal thickness from mild (> 506 μm) to advanced (< 446 μm).
Increasing use of corneal topography has led to a decline in use of these terms.
Diagnosis is clinical, seeking a history of eye injury. An important differential diagnosis is Vogt-Koyanagi-Harada syndrome (VKH), which is thought to have the same pathogenesis, without a history of surgery or penetrating eye injury.
Still experimental, skin tests with soluble extracts of human or bovine uveal tissue are said to elicit delayed hypersensitivity responses in these patients. Additionally, circulating antibodies to uveal antigens have been found in patients with SO and VKH, as well as those with long-standing uveitis, making this a less than specific assay for SO and VKH.
Imaging studies such as ultrasonography (US), Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI) can aid diagnosis. On ultrasound, Coats' disease appears as a hyperechoic mass in the posterior vitreous without posterior acoustic shadowing; vitreous and subretinal hemorrhage may often be observed.
On CT, the globe appears hyperdense compared to normal vitreous due to the proteinaceous exudate, which may obliterate the vitreous space in advanced disease. The anterior margin of the subretinal exudate enhances with contrast. Since the retina is fixed posteriorly at the optic disc, this enhancement has a V-shaped configuration.
On MRI, the subretinal exudate shows high signal intensity on both T1- and T2-weighted images. The exudate may appear heterogeneous if hemorrhage or fibrosis is present. The subretinal space does not enhance with gadolinium contrast. Mild to moderate linear enhancement may be seen between the exudate and the remaining vitreous. The exudate shows a large peak at 1-1.6 ppm on proton MR spectroscopy.
In an eye with iridocyclitis, (inflammation of both the iris and ciliary body), the involved pupil will be smaller than the uninvolved, due to reflex muscle spasm of the sphincter muscle of the iris.
Generally, conjunctivitis does not affect the pupils.
With acute angle-closure glaucoma, the pupil is generally fixed in mid-position, oval, and responds sluggishly to light, if at all.
Shallow anterior chamber depth may indicate a predisposition to one form of glaucoma (narrow angle) but requires slit-lamp examination or other special techniques to determine it.
In the presence of a "red eye", a shallow anterior chamber may indicate acute glaucoma, which requires immediate attention.
Grossly, retinal detachment and yellowish subretinal exudate containing cholesterol crystals are commonly seen.
Microscopically, the wall of retinal vessels may be thickened in some cases, while in other cases the wall may be thinned with irregular dilatation of the lumen. The subretinal exudate consists of cholesterol crystals, macrophages laden with cholesterol and pigment, erythrocytes, and hemosiderin. A granulomatous reaction, induced by the exudate, may be seen with the retina. Portions of the retina may develop gliosis as a response to injury.
On photographs taken using a flash, instead of the familiar red-eye effect, leukocoria can cause a bright white reflection in an affected eye. Leukocoria may appear also in low indirect light, similar to eyeshine.
Leukocoria can be detected by a routine eye exam (see Ophthalmoscopy). For screening purposes, the red reflex test is used. In this test, when a light is shone briefly through the pupil, an orange red reflection is normal. A white reflection is leukocoria.
Because SO is so rarely encountered following eye injury, even when the injured eye is retained, the first choice of treatment may not be enucleation or evisceration, especially if there is a chance that the injured eye may regain some function. Additionally, with current advanced surgical techniques, many eyes once considered nonviable now have a fair prognosis.
However, only if the injured eye has completely lost its vision and has no potential for any visual recovery, prevention of SO is done by enucleation of the injured eye preferably within the first 2 weeks of injury. Evisceration—the removal of the contents of the globe while leaving the sclera and extraocular muscles intact—is easier to perform, offers long-term orbital stability, and is more aesthetically pleasing, i.e., a greater measure of movement of the prosthesis and thus a more natural appearance. There is concern, however, that evisceration may lead to a higher incidence of SO compared to enucleation. Several retrospective studies involving over 3000 eviscerations, however, have failed to identify a single case of SO.
Once SO is developed, Immunosuppressive therapy is the mainstay of treatment. When initiated promptly following injury, it is effective in controlling the inflammation and improving the prognosis. Mild cases may be treated with local application of corticosteroids and pupillary dilators. More severe or progressive cases require high-dose systemic corticosteroids for months to years. Patients who become resistant to corticosteroids or develop side effects of long-term corticosteroid therapy (osteoporosis and pathologic fractures, mental status changes, etc.), may be candidates for therapy with chlorambucil, cyclophosphamide, or ciclosporin.
Dry eyes can usually be diagnosed by the symptoms alone. Tests can determine both the quantity and the quality of the tears. A slit lamp examination can be performed to diagnose dry eyes and to document any damage to the eye.
A Schirmer's test can measure the amount of moisture bathing the eye. This test is useful for determining the severity of the condition. A five-minute Schirmer's test with and without anesthesia using a Whatman #41 filter paper 5 mm wide by 35 mm long is performed. For this test, wetting under 5 mm with or without anesthesia is considered diagnostic for dry eyes.
If the results for the Schirmer's test are abnormal, a Schirmer II test can be performed to measure reflex secretion. In this test, the nasal mucosa is irritated with a cotton-tipped applicator, after which tear production is measured with a Whatman #41 filter paper. For this test, wetting under 15 mm after five minutes is considered abnormal.
A tear breakup time (TBUT) test measures the time it takes for tears to break up in the eye. The tear breakup time can be determined after placing a drop of fluorescein in the cul-de-sac.
A tear protein analysis test measures the lysozyme contained within tears. In tears, lysozyme accounts for approximately 20 to 40 percent of total protein content.
A lactoferrin analysis test provides good correlation with other tests.
The presence of the recently described molecule Ap4A, naturally occurring in tears, is abnormally high in different states of ocular dryness. This molecule can be quantified biochemically simply by taking a tear sample with a plain Schirmer test. Utilizing this technique it is possible to determine the concentrations of Ap4A in the tears of patients and in such way diagnose objectively if the samples are indicative of dry eye.
The Tear Osmolarity Test has been proposed as a test for dry eye disease. Tear osmolarity may be a more sensitive method of diagnosing and grading the severity of dry eye compared to corneal and conjunctival staining, tear break-up time, Schirmer test, and meibomian gland grading. Others have recently questioned the utility of tear osmolarity in monitoring dry eye treatment.
Physicians, specifically ophthalmologists, can examine the child and give a correct diagnosis. Some will do molecular genetics tests to see if the cause is linked with gene mutations.
Ultrasounds can be used to diagnose anophthalmia during gestation. Due to the resolution of the ultrasound, however, it is hard to diagnose it until the second trimester. The earliest to detect anophthalmia this way is approximately 20 weeks. 3D and 4D ultrasounds have proven to be more accurate at viewing the fetus's eyes during pregnancy and are another alternative to the standard ultrasound.
The diagnosis of episcleritis is based upon the history and physical examination. The history should be explored for the presence of the diseases associated with episcleritis, and the symptoms they cause, such as rash, arthritis, venereal disease, and recent viral infection. Episcleritis may be differentiated from scleritis by using phenylephrine or neosynephrine eye drops, which causes blanching of the blood vessels in episcleritis, but not in scleritis. A blue color to the sclera suggests scleritis, rather than episcleritis.
After anesthetizing the eye with medication, the conjunctiva may be moved with a cotton swab to observe the location of the enlarged blood vessels.
NK is diagnosed on the basis of the patient's medical history and a careful examination of the eye and surrounding area.
With regard to the patient's medical history, special attention should be paid to any herpes virus infections and possible surgeries on the cornea, trauma, abuse of anaesthetics or chronic topical treatments, chemical burns or, use of contact lenses. It is also necessary to investigate the possible presence of diabetes or other systemic diseases such as multiple sclerosis.
The clinical examination is usually performed through a series of assessments and tools:
- General examination of cranial nerves, to determine the presence of nerve damage.
- Eye examinations:
1. Complete eye examination: examination of the eyelids, blink rate, presence of inflammatory reactions and secretions, corneal epithelial alterations.
2. Corneal sensitivity test: performed by placing a cotton wad or cotton thread in contact with the corneal surface: this only allows to determine whether corneal sensitivity is normal, reduced or absent; or using an esthesiometer that allows to assess corneal sensitivity.
3. Tear film function test, such as Schirmer's test, and tear film break-up time.
4. Fluorescein eye stain test, which shows any damage to the corneal and conjunctival epithelium
Based on the presence of extraocular findings, such as neurological, auditory and integumentary manifestations, the "revised diagnostic criteria" of 2001 classify the disease as complete (eyes along with both neurological and skin), incomplete (eyes along with either neurological or skin) or probable (eyes without either neurological or skin) . By definition, for research homogeneity purposes, there are two exclusion criteria: previous ocular penetrating trauma or surgery, and other concomitant ocular disease similar to VKH disease.
CNV can be detected by using a type of perimetry called preferential hyperacuity perimetry. On the basis of fluorescein angiography, CNV may be described as classic or occult. Two other tests that help identify the condition include indocyanine green angiography and optical coherence tomography.
The diagnosis of Reis-Bücklers corneal dystrophy is based on the clinical presentation, rather than labs or imaging. Sometimes it is difficult to distinguish the disease from honeycomb dystrophy.
Genetic tests and related research are currently being performed at Centogene AG in Rostock, Germany; John and Marcia Carver Nonprofit Genetic Testing Laboratory in Iowa City, IA; GENESIS Center for Medical Genetics in Poznan, Poland; Miraca Genetics Laboratories in Houston, TX; Asper Biotech in Tartu, Estonia; CGC Genetics in Porto, Portugal; CEN4GEN Institute for Genomics and Molecular Diagnostics in Edmonton, Canada; and Reference Laboratory Genetics - Barcelona, Spain.
Norrie disease and other NDP related diseases are diagnosed with the combination of clinical findings and molecular genetic testing. Molecular genetic testing identifies the mutations that cause the disease in about 85% of affected males. Clinical diagnoses rely on ocular findings. Norrie disease is diagnosed when grayish-yellow fibrovascular masses are found behind the eye from birth through three months. Doctors also look for progression of the disease from three months through 8–10 years of age. Some of these progressions include cataracts, iris atrophy, shallowing of anterior chamber, and shrinking of the globe. By this point, people with the condition either have only light perception or no vision at all.
Molecular genetic testing is used for more than an initial diagnosis. It is used to confirm diagnostic testing, for carrier testing females, prenatal diagnosis, and preimplantation genetic diagnosis. There are three types of clinical molecular genetic testing. In approximately 85% of males, mis-sense and splice mutations of the NDP gene and partial or whole gene deletions are detected using sequence analysis. Deletion/duplication analysis can be used to detect the 15% of mutations that are submicroscopic deletions. This is also used when testing for carrier females. The last testing used is linkage analysis, which is used when the first two are unavailable. Linkage analysis is also recommended for those families who have more than one member affected by the disease.
On MRI the retinal dysplasia that occurs with the syndrome can be indistinguishable from persistent hyperplastic primary vitreous, or the dysplasia of trisomy 13 and Walker–Warburg syndrome.
There is no way to prevent keratoconjunctivitis sicca. Complications can be prevented by use of wetting and lubricating drops and ointments.
Hyperopia is typically classified according to clinical appearance, its severity, or how it relates to the eye's accommodative status.
There are three clinical categories of hyperopia.
- Simple hyperopia
- Pathological hyperopia
- Functional hyperopia
There are also three categories severity:
- Low
- Moderate
- High
Other common types of refractive errors are near-sightedness, astigmatism, and presbyopia.
If tested in the prodromal phase, CSF pleocytosis is found in more than 80%, mainly lymphocytes. This pleocytosis resolves in about 8 weeks even if chronic uveitis persists.
Functional tests may include electroretinogram and visual field testing. Diagnostic confirmation and an estimation of disease severity may involve imaging tests such as retinography, fluorescein or indocyanine green angiography, optical coherence tomography and ultrasound. For example, indocyanine green angiography may detect continuing choroidal inflammation in the eyes without clinical symptoms or signs. Ocular MRI may be helpful and auditory symptoms should undergo audiologic testing. Histopathology findings from eye and skin are discussed by Walton.
The diagnosis of VKH is based on the clinical presentation; the diagnostic differential is extensive, and includes (almong others) sympathetic ophthalmia, sarcoidosis, primary intraocular B-cell lymphoma, posterior scleritis, uveal effusion syndrome, tuberculosis, syphilis, and multifocal choroidopathy syndromes.
Episcleritis is a benign, self-limiting condition, meaning patients recover without any treatment. Most cases of episcleritis resolve within 7–10 days. The nodular type is more aggressive and takes longer to resolve. Although rare, some cases may progress to scleritis. However, in general, episcleritis does not cause complications in the eye. Smoking tobacco delays the response to treatment in patients with episcleritis.
Treatment options include contact lenses and intrastromal corneal ring segments for correcting refractive errors caused by irregular corneal surface, corneal collagen cross-linking to strengthen a weak and ectatic cornea, or corneal transplant for advanced cases.
Birdshot chorioretinopathy may show resistance to treatment. Immunosuppressant therapy along with oral corticosteroid has been somewhat effective in slowing down the progressive inflammation associated with the disorder, preserving visual integrity as much as possible. Long-term use of such medications must be closely monitored, however, due to the discomforting and potentially debilitating and life-threatening side-effects.
Immunosuppressive drugs such as the therapeutic monoclonal antibody daclizumab, ciclosporin and methotrexate have proven to be effective treatment options for birdshot chorioretinopathy. Substantial reduction and even stabilization of both vitreous inflammation and retinal vasculitis have been evident via electroretinography, during daclizumab (IL-2 receptor blocker) therapy. This is also supported by the observation of elevated levels of IL-2 in the eyes of patients. Loss of visual acuity unrelated to the inflammation caused by the disorder, however, often remains unchanged despite usage of the drug. This is reflected by the lack of difference in visual acuity and the vision-related quality of life among various treatment categories in birdshot patients. Contraindications and adverse side-effects are always a factor, as well.