Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Diet and lifestyle are believed to play a large role in whether colorectal polyps form. Studies show there to be a protective link between consumption of cooked green vegetables, brown rice, legumes, and dried fruit and decreased incidence of colorectal polyps.
In the United States screening is typically recommended between the age of 50 and 75 years. For those between 76 and 85 years of age the decision to screen should be individualized. A number of screening methods can be used including stool based tests every 3 years, sigmoidoscopy every 5 years and colonoscopy every 10 years. For those at high risk, screenings usually begin at around 40. It is unclear which of these two methods is better. Colonoscopy may find more cancers in the first part of the colon but is associated with greater cost and more complications. For people with average risk who have had a high-quality colonoscopy with normal results, the American Gastroenterological Association does not recommend any type of screening in the 10 years following the colonoscopy. For people over 75 or those with a life expectancy of less than 10 years, screening is not recommended. It takes about 10 years after screening for one out of a 1000 people to benefit.
In Canada, among those 50 to 75 at normal risk, fecal immunochemical testing or FOBT is recommended every two years or sigmoidoscopy every 10 years. Colonoscopy is less preferred.
Some countries have national colorectal screening programs which offer FOBT screening for all adults within a certain age group, typically starting between age 50 and 60. Examples of countries with organised screening include the United Kingdom, Australia and the Netherlands.
Because of the way familial polyposis develops, it is possible to have the genetic condition, and therefore be at risk, but have no polyps or issues so far. Therefore, an individual may be diagnosed "at risk of" FAP, and require routine monitoring, but not (yet) actually have FAP (i.e., carries a defective gene but as yet appears not to have any actual medical issue as a result of this). Clinical management can cover several areas:
- Identifying those individuals who could be at risk of FAP: usually from family medical history or genetic testing
- Diagnosis (confirming whether they have FAP)—this can be done either by genetic testing, which is definitive, or by visually checking the intestinal tract itself.
- Screening / monitoring programs involve visually examining the intestinal tract to check its healthy condition. It is undertaken as a routine matter every few years where there is cause for concern, when either (a) a genetic test has confirmed the risk or (b) a genetic test has not been undertaken for any reason so the actual risk is unknown. Screening and monitoring allows polyposis to be detected visually before it can become life-threatening.
- Treatment, typically surgery of some kind, is involved if polyposis has led to a large number of polyps, or a significant risk of cancer, or actual cancer.
Monitoring involves the provision of outpatient colonoscopy, and occasionally upper gastric tract esophagogastroduodenoscopy (EGD, to search for premalignant gastric or duodenal tumors), typically once every 1–3 years, and/or a genetic blood test to definitively confirm or deny susceptibility. A small number of polyps can often be excised (removed) during the procedure, if found, but if there are more severe signs or numbers, in patient surgery may be required.
NCBI states that when an individual is identified as having FAP, or the mutations resulting in FAP: "It is appropriate to evaluate the parents of an affected individual (a) with molecular genetic testing of APC if the disease-causing mutation is known in the proband [person first identified with the condition] or (b) for clinical manifestations of APC-associated polyposis conditions".
Aspirin and celecoxib appear to decrease the risk of colorectal cancer in those at high risk. Aspirin is recommended in those who are 50 to 60 years old, do not have an increased risk of bleeding, and are at risk for cardiovascular disease to prevent colorectal cancer. It is not recommended in those at average risk. There is tentative evidence for calcium supplementation, but it is not sufficient to make a recommendation. Vitamin D intake and blood levels are associated with a lower risk of colon cancer.
Screening for colonic polyps as well as preventing them has become an important part of the management of the condition. Medical societies have established guidelines for colorectal screening in order to prevent adenomatous polyps and to minimize the chances of developing colon cancer. It is believed that some changes in the diet might be helpful in preventing polyps from occurring but there is no other way to prevent the polyps from developing into cancerous growths than by detecting and removing them.
According to the guidelines established by the American Cancer Society, individuals who reach the age of 50 should perform an occult blood test yearly. Colon polyps as they grow can sometimes cause bleeding within the intestine, which can be detected with the help of this test. Also, persons in their 50s are recommended to have flexible sigmoidoscopies performed once in 3 to 5 years to detect any abnormal growth which could be an adenomatous polyp. If adenomatous polyps are detected during this procedure, it is most likely that the patient will have to undergo a colonoscopy. Medical societies recommend colonoscopies every ten years starting at age 50 as a necessary screening practice for colon cancer. The screening provides an accurate image of the intestine and also allows the removal of the polyp, if found. Once an adenomatous polyp is identified during colonoscopy, there are several methods of removal including using a snare or a heating device. Colonoscopies are preferred over sigmoidoscopies because they allow the examination of the entire colon; a very important aspect, considering that more than half of the colonic polyps occur in the upper colon, which is not reached during sigmoidoscopies.
It has been statistically demonstrated that screening programs are effective in reducing the number of deaths caused by colon cancer due to adenomatous polyps. While there are risks of complications associated with colonoscopies, those risks are extremely low at approximately 0.35 percent. For comparison, the lifetime risk of developing colon cancer is around 6 percent. As there is a small likelihood of recurrence, surveillance after polyp removal is recommended.
Genetic testing for mutations in DNA mismatch repair genes is expensive and time-consuming, so researchers have proposed techniques for identifying cancer patients who are most likely to be HNPCC carriers as ideal candidates for genetic testing. The Amsterdam Criteria (see below) are useful, but do not identify up to 30% of potential Lynch syndrome carriers. In colon cancer patients, pathologists can measure microsatellite instability in colon tumor specimens, which is a surrogate marker for DNA mismatch repair gene dysfunction. If there is microsatellite instability identified, there is a higher likelihood for a Lynch syndrome diagnosis. Recently, researchers combined microsatellite instability (MSI) profiling and immunohistochemistry testing for DNA mismatch repair gene expression and identified an extra 32% of Lynch syndrome carriers who would have been missed on MSI profiling alone. Currently, this combined immunohistochemistry and MSI profiling strategy is the most advanced way of identifying candidates for genetic testing for the Lynch syndrome.
Genetic counseling and genetic testing are recommended for families that meet the Amsterdam criteria, preferably before the onset of colon cancer.
Colorectal polyps can be detected using a faecal occult blood test, flexible sigmoidoscopy, colonoscopy, virtual colonoscopy, digital rectal examination, barium enema or a pill camera.
Malignant potential is associated with
- degree of dysplasia
- Type of polyp (e.g. villous adenoma):
- Tubular Adenoma: 5% risk of cancer
- Tubulovillous adenoma: 20% risk of cancer
- Villous adenoma: 40% risk of cancer
- Size of polyp:
- <1 cm =<1% risk of cancer
- 1 cm=10% risk of cancer
- 2 cm=15% risk of cancer
Normally an adenoma which is greater than 0.5 cm is treated
The following are the Amsterdam criteria in identifying high-risk candidates for molecular genetic testing:
"Amsterdam Criteria (all bullet points must be fulfilled):"
- Three or more family members with a confirmed diagnosis of colorectal cancer, one of whom is a first degree (parent, child, sibling) relative of the other two
- Two successive affected generations
- One or more colon cancers diagnosed under age 50 years
- Familial adenomatous polyposis (FAP) has been excluded
"Amsterdam Criteria II (all bullet points must be fulfilled):"
- Three or more family members with HNPCC-related cancers, one of whom is a first-degree relative of the other two
- Two successive affected generations
- One or more of the HNPCC-related cancers diagnosed under age 50 years
- Familial adenomatous polyposis (FAP) has been excluded
These aggressive tumors are generally diagnosed at advanced stages and survival is generally shorter. The prognosis of SRCC and its chemosensitivity with specific regimens are still controversial as SRCC is not specifically identified in most studies and its poor prognosis may be due to its more advanced stage. One study suggests that its dismal prognosis seems to be caused by its intrinsic tumor biology, suggesting an area for further research.
This disease is often discovered during surgery for other conditions, e.g., hernia repair, following which an experienced pathologist can confirm the diagnosis. Advanced stages may present as tumors palpable on the abdomen or distention of the belly ("jelly belly" is sometimes used as a slang term for the condition). Due to the rarity of this disease, it is important to obtain an accurate diagnosis so that appropriate treatment may be obtained from a surgical oncologist who specializes in appendix cancer. Diagnostic tests may include CT scans, examination of tissue samples obtained through laparoscopy, and the evaluation of tumor markers. In most cases a colonoscopy is unsuitable as a diagnostic tool because in most cases appendix cancer invades the abdominal cavity but not the colon (however, spread inside the colon is occasionally reported). PET scans may be used to evaluate high-grade mucinous adenocarcinoma, but this test is not reliable for detecting low-grade tumors because those do not take up the dye which shows up on scans. New MRI procedures are being developed for disease monitoring, but standard MRIs are not typically used as a diagnostic tool. Diagnosis is confirmed through pathology.
Chemotherapy has relatively poor curative efficacy in SRCC patients and overall survival rates are lower compared to patients with more typical cancer pathology. SRCC cancers are usually diagnosed during the late stages of the disease, so the tumors generally spread more aggressively than non-signet cancers, making treatment challenging. In the future, case studies indicate that bone marrow metastases will likely play a larger role in the diagnosis and management of signet ring cell gastric cancer.
In SRCC of the stomach, removal of the stomach cancer is the treatment of choice. There is no combination of chemotherapy which is clearly superior to others, but most active regimens include 5-Fluorouracil (5-FU), Cisplatin, and/or Etoposide. Some newer agents, including Taxol and Gemcitabine (Gemzar) are under investigation.
In a single case study of a patient with SRCC of the bladder with recurrent metastases, the patient exhibited a treatment response to palliative FOLFOX-6 chemotherapy.
While cancer is generally considered a disease of old age, children can also develop cancer. In contrast to adults, carcinomas are exceptionally rare in children..
The two biggest risk factors for ovarian carcinoma are age and family history.
An important anatomic landmark in anal cancer is the pectinate line (dentate line), which is located about 1–2 cm from the anal verge (where the anal mucosa of the anal canal becomes skin). Anal cancers located above this line (towards the head) are more likely to be carcinomas, whilst those located below (towards the feet) are more likely to be squamous cell carcinomas that may ulcerate. Anal cancer is strongly associated with ulcerative colitis and the sexually transmissible infections HPV and HIV. Anal cancer may be a cause of constipation or tenesmus, or may be felt as a palpable mass, although it may occasionally present as an ulcerative form.
Anal cancer is investigated by biopsy and may be treated by excision and radiotherapy, or with external beam radiotherapy and adjunctive chemotherapy. The five-year survival rate with the latter procedure is above 70%.
10-year survival rates for mucinous tumors is excellent in the absence of invasion.
In the case of borderline tumors confined to the ovary and malignant tumors without invasion, the survival rates are 90% or greater. In invasive mucinous cystadenocarcinomas, the survival is approximately 30%
Colorectal cancer is a disease of old age: It typically originates in the secretory cells lining the gut, and risk factors include diets low in vegetable fibre and high in fat. If a younger person gets such a cancer, it is often associated with hereditary syndromes like Peutz-Jegher's, hereditary nonpolyposis colorectal cancer or familial adenomatous polyposis. Colorectal cancer can be detected through the bleeding of a polyp, colicky bowel pain, a bowel obstruction or the biopsy of a polyp at a screening colonoscopy. A constant feeling of having to go to the toilet or anemia might also point to this kind of cancer.
Use of a colonoscope can find these cancers, and a biopsy can reveal the extent of the involvement of the bowel wall. Removal of a section of the colon is necessary for treatment, with or without chemotherapy. Colorectal cancer has a comparatively good prognosis when detected early.
Staging of carcinoma refers to the process of combining physical/clinical examination, pathological review of cells and tissues, surgical techniques, laboratory tests, and imaging studies in a logical fashion to obtain information about the size of the neoplasm and the extent of its invasion and metastasis.
Carcinomas are usually staged with Roman numerals. In most classifications, Stage I and Stage II carcinomas are confirmed when the tumor has been found to be small and/or to have spread to local structures only. Stage III carcinomas typically have been found to have spread to regional lymph nodes, tissues, and/or organ structures, while Stage IV tumors have already metastasized through the blood to distant sites, tissues, or organs.
In some types of carcinomas, Stage 0 carcinoma has been used to describe carcinoma "in situ", and occult carcinomas detectable only via examination of sputum for malignant cells (in lung carcinomas).
In more recent staging systems, substages (a, b, c) are becoming more commonly used to better define groups of patients with similar prognosis or treatment options.
Carcinoma stage is the variable that has been most consistently and tightly linked to the prognosis of the malignancy.
The criteria for staging can differ dramatically based upon the organ system in which the tumor arises. For example, the colon and bladder cancer staging system relies on depth of invasion, staging of breast carcinoma is more dependent on the size of the tumor, and in renal carcinoma, staging is based on both the size of the tumor and the depth of the tumor invasion into the renal sinus. Carcinoma of the lung has a more complicated staging system, taking into account a number of size and anatomic variables.
The UICC/AJCC TNM systems are most often used. For some common tumors, however, classical staging methods (such as the Dukes classification for colon cancer) are still used.
Small carcinoids (<2 cm) without features of malignancy may be treated by appendectomy if complete removal is possible. Other carcinoids and adenocarcinomas may require right hemicolectomy. Note: the term "carcinoids" is outdated: these tumors are now more accurately called "neuroendocrine tumors." For more information, see "appendiceal neuroendocrine tumors."
Pseudomyxoma peritonei treatment includes cytoreductive surgery which includes the removal of visible tumor and affected essential organs within the abdomen and pelvis. The peritoneal cavity is infused with heated chemotherapy known as HIPEC in an attempt to eradicate residual disease. The surgery may or may not be preceded or followed with intravenous chemotherapy or HIPEC.
For surface epithelial-stromal tumors, the most common sites of metastasis are the pleural cavity (33%), the liver (26%), and the lungs (3%).
The risks of progression to colorectal cancer increases if the polyp is larger than 1 cm and contains a higher percentage of villous component. Also, the shape of the polyps is related to the risk of progression into carcinoma. Polyps that are pedunculated (with a stalk) are usually less dangerous than sessile polyps (flat polyps). Sessile polyps have a shorter pathway for migration of invasive cells from the tumor into submucosal and more distant structures, and they are also more difficult to remove and to ascertain. Sessile polyps larger than 2 cm usually contain villous features, have a higher malignant potential, and tend to recur following colonoscopic polypectomy.
Although polyps do not carry significant risk of colon cancer, tubular adenomatous polyps may become cancerous when they grow larger. Larger tubular adenomatous polyps have an increased risk of malignancy when larger because then they develop more villous components and may become sessile.
It is estimated that an individual whose parents have been diagnosed with an adenomatous polyp has a 50% greater chance to develop colon cancer than individuals with no family history of colonic polyps. At this point, there is no method to establish the risks that patients with a family history of colon polyps have to develop these growths. Overall, nearly 6% of the population, regardless of the family history, is at risk of developing colon cancer.
Surgical exploration may be necessary to obtain a suitable biopsy and to accurately stage a patient with cholangiocarcinoma. Laparoscopy can be used for staging purposes and may avoid the need for a more invasive surgical procedure, such as laparotomy, in some patients.
There are no specific blood tests that can diagnose cholangiocarcinoma by themselves. Serum levels of carcinoembryonic antigen (CEA) and CA19-9 are often elevated, but are not sensitive or specific enough to be used as a general screening tool. However, they may be useful in conjunction with imaging methods in supporting a suspected diagnosis of cholangiocarcinoma.
Treatment is variable, both due to its rarity and to its frequently slow-growing nature. Treatment ranges from watchful waiting to debulking and hyperthermic intraperitoneal chemotherapy (HIPEC, also called intraperitoneal hyperthermic chemotherapy, IPHC) with cytoreductive surgery.
For more general information, see ovarian cancer.
For advanced cancer of this histology, the US National Cancer Institute recommends a method of chemotherapy that combines intravenous (IV) and intraperitoneal (IP) administration. Preferred chemotherapeutic agents include a platinum drug with a taxane.
Investigations by the physician include imaging (ultrasound, CAT scan, MRI) and, if possible, obtaining a tissue diagnosis by biopsy, hysteroscopy, or D&C.
Ultimately the diagnosis is established by the histologic examination of the specimen. Typically malignant lesions have >10 mitosis per high power field. In contrast a uterine leiomyoma as a benign lesion would have < 5 mitosis per high power field.