Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Three main points in diagnosing thumb hypoplasia are: width of the first web space, instability of the involved joints and function of the thumb. Thorough physical examination together with anatomic verification at operation reveals all the anomalies. An X-ray of the hand and thumb in two directions is always mandatory. When the pediatrician thinks the condition is associated with some kind of syndrome other tests will be done. More subtle manifestations of types I and II may not be recognized, especially when more obvious manifestations of longitudinal radial deficiency in the opposite extremity are present. Therefore, a careful examination of both hands is important.
When it comes to treatment it is important to differentiate a thumb that needs stability, more web width and function, or a thumb that needs to be replaced by the index finger. Severe thumb hypoplasia is best treated by pollicization of the index finger. Less severe thumb hypoplasia can be reconstructed by first web space release, ligament reconstruction and muscle or tendon transfer.
It has been recommended that pollicization is performed before 12 months, but a long-term study of pollicizations performed between the age of 9 months and 16 years showed no differences in function related to age at operation.
It is important to know that every reconstruction of the thumb never gives a normal thumb, because there is always a decline of function. When a child has a good index finger, wrist and fore-arm the maximum strength of the thumb will be 50% after surgery in comparison with a normal thumb. The less developed the index finger, wrist and fore-arm is, the less strength the reconstructed thumb will have after surgery.
There are multiple classifications for the triphalangeal thumb. The reason for these different classifications is the heterogeneity in appearance of the TPT.
The classification according to Wood describes the shape of the extra phalanx: delta (Fig. 4), rectangular or full phalanx (Table 1). With the classification made by Buck-Gramcko a surgical treatment can be chosen (Table 1). Buck-Gramcko differentiates between six different shapes of the extra phalanx and associated malformations.
Table 1: Classifications of Wood and Buck-Gramcko
The diagnosis of AOS is a clinical diagnosis based on the specific features described above. A system of major and minor criteria was proposed.
The combination of two major criteria would be sufficient for the diagnosis of AOS, while a combination of one major and one minor feature would be suggestive of AOS. Genetic testing can be performed to test for the presence of mutation in one of the known genes, but these so far only account for an estimated 50% of patients with AOS. A definitive diagnosis may therefore not be achieved in all cases.
No surgical outcomes studies exist for evaluating the function of the thumbs after an on-top plasty reconstruction.
Surgical correction is recommended when a constriction ring results in a limb contour deformity, with or without lymphedema.
Because neither of the two thumb components is normal, a decision should be taken on combining which elements to create the best possible composite digit. Instead of amputating the most hypoplastic thumb, preservation of skin, nail, collateral ligaments and tendons is needed to augment the residual thumb. Surgery is recommended in the first year of life, generally between 9 and 15 months of age.
Surgical options depend on type of polydactyly.
The goals of surgical treatment are: reducing length of the thumb, creating a good functioning, a stable and non deviated joint and improving the position of the thumb if necessary. Hereby improving function of the hand and thumb.
In general the surgical treatment is done for improvement of the thumb function. However, an extra advantage of the surgery is the improvement in appearance of the thumb. In the past, surgical treatment of the triphalangeal thumb was not indicated, but now it is generally agreed that operative treatment improves function and appearance. Because an operation was not indicated in the past, there’s still a population with an untreated triphalangeal thumb. The majority of this population doesn’t want surgery, because the daily functioning of the hand is good. The main obstacle for the untreated patients might not be the diminished function, but the appearance of the triphalangeal thumb.
The timing of surgery differs between Wood and Buck-Gramcko. Wood advises operation between the age of six months and two years, while Buck-Gramcko advises to operate for all indications before the age of six years.
- For TPT types I and II of the Buck-Gramcko classification, the surgical treatment typically consists of removing the extra phalanx and reconstructing the ulnar collateral ligament and the radial collateral ligament if necessary.
- For type III of Buck-Gramcko classification proposable surgical treatments:
- For type IV of Buck-Gramcko classification the surgical treatment typically consists of an osteotomy which reduces the middle phalanx and arthrodesis of the DIP. This gives a shortening of 1 to 1.5 cm. In most cases, this technique is combined with a shortening, rotation and palmar abduction osteotomy at metacarpal level to correct for position and length of the thumb. The extensor tendons and the intrinsic muscles are shortened as well.
- For type V of the Buck-Gramcko classification the surgical treatment proposably consists of a "pollicization". With a pollicization the malpositioned thumb is repositioned, rotated and shortened, the above-described rotation reduction osteotomy of the first metacarpal can be performed as well.
- For type VI of the Buck-Gramcko classification, the surgical treatment typically consists of removing the additional mostly hypoplastic thumb(s). Further procedures of reconstruction of the triphalangeal thumb are performed according to the shape of the extra phalanx as described above.
Diagnosis is based on clinical findings.
'Clinical findings'
- Profound congenital sensorineural deafness is present
- CT scan or MRI of the inner ear shows no recognizable structure in the inner ear.
- As michel's aplasia is associated with LAMM syndrome there will be Microtia and microdontia present(small sized teeth).
Molecular genetic Testing
1. "FGF3" is the only gene, whose mutation can cause congenital deafness with Michel's aplasia, microdontia and microtia
Carrier testing for at-risk relatives requires identification of mutations which are responsible for occurrence of disease in the family.
Patients with abnormal cardiac and kidney function may be more at risk for hemolytic uremic syndrome
Diagnosis may be suspected on the basis of the clinical and radiologic findings, and can supported by molecular analysis of the SHOX, SHOXY and PAR1 genes.
May also be suspected by ultrasound during the second trimester of gestation.
At the beginning of the surgery a tourniquet will be applied to the limb. A tourniquet compresses and control the arterial and venous circulation for about 2 hours. The constriction band must be dissected very carefully to avoid damaging the underlying neurovasculature. When the constriction band is excised, there will be a direct closure. This allows the fatty tissue to naturally reposition itself under the skin.
“With complete circumferential constriction bands, it is recommended that a two-stage correction approach be used. At the first operation, one-half of the circumference is excised and the other one-half can be excised after three to six months. This will avoid any problems to the distal circulation in the limb, which may already be compromised. Lymphedema, when present, will significantly improve within a few weeks of the first surgery.”
For the direct closure of the defect after dissecting a constriction band there are two different techniques:
1. Triangular flaps; For this technique the circumference between the two borders must be measured. Depending on the difference the number of triangular flaps can be decided. With a triangular flap you can create more skin.
2. Z/W-plasty; “Z-plasty is a plastic surgery technique that is used to improve the functional and cosmetic appearance of scars. It can elongate a contracted scar or rotate the scar tension line. The middle line of the Z-shaped incision (the central element) is made along the line of greatest tension or contraction, and triangular flaps are raised on opposite sides of the two ends and then transposed.”
In rare cases, if diagnosed in utero, fetal surgery may be considered to save a limb that is in danger of amputation or other deformity. This operation has been successfully performed on fetuses as young as 22 weeks. The Melbourne's Monash Medical Centre in Australia, as well as multiple facilities in the United States of America, have performed successful amniotic band release surgery.
Surgery is an option to correct some of the morphological changes made by Liebenberg Syndrome. Cases exist where surgery is performed to correct radial deviations and flexion deformities in the wrist. A surgery called a carpectomy has been performed on a patient whereby a surgeon removes the proximal row of the carpal bones. This procedure removes some of the carpal bones to create a more regular wrist function than is observed in people with this condition.
The overall prognosis is excellent in most cases. Most children with Adams–Oliver syndrome can likely expect to have a normal life span. However, individuals with more severe scalp and cranial defects may experience complications such as hemorrhage and meningitis, leading to long-term disability.
The incidence of VACTERL association is estimated to be approximately 1 in 10,000 to 1 in 40,000 live-born infants. It is seen more frequently in infants born to diabetic mothers. While most cases are sporadic, there are clearly families who present with multiple involved members.
MRI imaging can be used to detect whether the abducens nerve is present.
Since Duane-radial ray syndrome is a genetic disorder, a genetic test would be performed. One test that can be used is the SALL4 sequence analysis that is used to detect if SALL4 is present. If there is no pathogenic variant observed, a deletion/duplication analysis can be ordered following the SALL4 sequence analysis. As an alternative, another genetic test called a multi-gene panel can be ordered to detect SALL4 and any other genes of interest. The methods used for this panel vary depending on the laboratory.
There is no known cure. In selected patients orthopaedic surgery may be helpful to try to gain some functionality of severely impaired joints.
Radial aplasia is a congenital defect which affects the formation of the radius bone in the arm. The radius is the lateral bone which connects to the wrist via articulation with the carpal bones. A child born with this condition has either a short or absent radius bone in one or both of his or her arm(s). Radial aplasia also results in the thumb being either partly formed or completely absent from the hand. Radial aplasia is connected with the condition VACTERL association. The cause for radial aplasia in unknown, but it widely believed to occur within the first ten weeks of gestation.
This can be done by annual evaluations by multidiciplinary team involving otolaryngologist, clinical geneticist, a pediatrician, the expertise of an educator of the deaf, a neurologist is appropriate.
Treatment for NPS varies depending on the symptoms observed.
- Perform screening for renal disease and glaucoma, surgery, intensive physiotherapy, or genetic counseling.
- ACE inhibitors are taken to treat proteinuria and hypertension in NPS patients.
- Dialysis and renal transplant.
- Physical therapy, bracing and analgesics for joint pain.
- Other surgery treatments such as patella realignment, joint replacement, and the cutting away of the head of radius.
In cases of a minor deviation of the wrist, treatment by splinting and stretching alone may be a sufficient approach in treating the radial deviation in RD. Besides that, the parent can support this treatment by performing passive exercises of the hand. This will help to stretch the wrist and also possibly correct any extension contracture of the elbow. Furthermore, splinting is used as a postoperative measure trying to avoid a relapse of the radial deviation.
While there is no cure for BGS, symptoms can be treated as they arise. Surgery shortly after birth can repair craniosynostosis, as well as defects in the hand to create a functional grasp. There are risks associated with untreated craniosynostosis, therefore surgery is often needed to separate and reshape the bones. Since patients with a RECQL4 mutation may be at an increased risk of developing cancer, surveillance is recommended.
More severe types (Bayne type III en IV) of radial dysplasia can be treated with surgical intervention. The main goal of centralization is to increase hand function by positioning the hand over the distal ulna, and stabilizing the wrist in straight position. Splinting or soft-tissue distraction may be used preceding the centralization.
In classic centralization central portions of the carpus are removed to create a notch for placement of the ulna. A different approach is to place the metacarpal of the middle finger in line with the ulna with a fixation pin.
If radial tissues are still too short after soft-tissue stretching, soft tissue release and different approaches for manipulation of the forearm bones may be used to enable the placement of the hand onto the ulna. Possible approaches are shortening of the ulna by resection of a segment, or removing carpal bones. If the ulna is significantly bent, osteotomy may be needed to straighten the ulna. After placing the wrist in the correct position, radial wrist extensors are transferred to the extensor carpi ulnaris tendon, to help stabilize the wrist in straight position. If the thumb or its carpometacarpal joint is absent, centralization can be followed by pollicization. Postoperatively, a long arm plaster splinter has to be worn for at least 6 to 8 weeks. A removable splint is often worn for a long period of time.
Radial angulation of the hand enables patients with stiff elbows to reach their mouth for feeding; therefore treatment is contraindicated in cases of extension contracture of the elbow. A risk of centralization is that the procedure may cause injury to the ulnar physis, leading to early epiphyseal arrest of the ulna, and thereby resulting in an even shorter forearm. Sestero et al. reported that ulnar growth after centralization reaches from 48% to 58% of normal ulnar length, while ulnar growth in untreated patients reaches 64% of normal ulnar length. Several reviews note that centralization can only partially correct radial deviation of the wrist and that studies with longterm follow-up show relapse of radial deviation.
The Wassel classification is used to categorise radial polydactyly, based upon the most proximal level of skeletal duplication.