Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Ultrasound remains as one of the only effective ways of prenatally diagnosing Larsen syndrome. Prenatal diagnosis is extremely important, as it can help families prepare for the arrival of an infant with several defects. Ultrasound can capture prenatal images of multiple joint dislocations, abnormal positioning of legs and knees, depressed nasal bridge, prominent forehead, and club feet. These symptoms are all associated with Larsen syndrome, so they can be used to confirm that a fetus has the disorder.
Most countries have standard newborn exams that include a hip joint exam screening for early detection of hip dysplasia.
Sometimes during an exam a "click" or more precisely "clunk" in the hip may be detected (although not all clicks indicate hip dysplasia). When a hip click (also known as "clicky hips" in the UK) is detected, the child's hips are tracked with additional screenings to determine if developmental dysplasia of the hip is caused.
Two maneuvers commonly employed for diagnosis in neonatal exams are the Ortolani maneuver and the Barlow maneuver.
In order to do the Ortolani maneuver it is recommended that the examiner put the newborn baby in a position in which the contralateral hip is held still while the thigh of the hip being tested is abducted and gently pulled anteriorly. If a "clunk" is heard (the sound of the femoral head moving over the acetabulum), the joint is normal, but absence of the "clunk" sound indicates that the acetabulum is not fully developed. The next method that can be used is called the Barlow maneuver. It is done by adducting the hip while pushing the thigh posteriorly. If the hip goes out of the socket it means it is dislocated, and the newborn has a congenital hip dislocation. The baby is laid on its back for examination by separation of its legs. If a clicking sound can be heard, it indicates that the baby may have a dislocated hip. It is highly recommended that these maneuvers be done when the baby is not fussing, because the baby may inhibit hip movement.
The condition can be confirmed by ultrasound and X-ray. Ultrasound imaging yields better results defining the anatomy until the cartilage is ossified. When the infant is around 3 months old a clear roentgenographic image can be achieved. Unfortunately the time the joint gives a good x-ray image is also the point at which nonsurgical treatment methods cease to give good results. In x-ray imaging dislocation may be indicated if the Shenton's line (an arc drawn from the medial aspect of the femoral neck through the superior margin of the obturator foramen) does not result in a smooth arc. However, in infants this line can be unreliable as it depends on the rotation of the hip when the image is taken ()
Asymmetrical gluteal folds and an apparent limb-length inequality can further indicate unilateral hip dysplasia. Most vexingly, many newborn hips show a certain ligamentous laxity, on the other hand severely malformed joints can appear stable. That is one reason why follow-up exams and developmental monitoring are important. Frequency and methods of routine screenings in children is still in debate however physical examination of newborns followed by appropriate use of hip ultrasound is widely accepted.
The Harris hip score (developed by William H. Harris MD, an orthopedist from Massachusetts) is one way to evaluate hip function following surgery. Other scoring methods are based on patients' evaluation like e.g. the Oxford hip score, HOOS and WOMAC score. Children's Hospital Oakland Hip Evaluation Scale (CHOHES) is a modification of the Harris hip score that is currently being evaluated.
Hip dysplasia can develop in older age. Adolescents and adults with hip dysplasia may present with hip pain and in some cases hip labral tears. X-rays are used to confirm a diagnosis of hip dysplasia. CT scans and MRI scans are occasionally used too.
Surgery is an option to correct some of the morphological changes made by Liebenberg Syndrome. Cases exist where surgery is performed to correct radial deviations and flexion deformities in the wrist. A surgery called a carpectomy has been performed on a patient whereby a surgeon removes the proximal row of the carpal bones. This procedure removes some of the carpal bones to create a more regular wrist function than is observed in people with this condition.
Some sources prefer "developmental dysplasia of the hip" (DDH) to "congenital dislocation of the hip" (CDH), finding the latter term insufficiently flexible in describing the diversity of potential complications.
The use of the word congenital can also imply that the condition already exists at birth. This terminology introduces challenges, because the joint in a newborn is formed from cartilage and is still malleable, making the onset difficult to ascertain.
The newer term DDH also encompasses occult dysplasia (e.g. an underdeveloped joint) without dislocation and a dislocation developing after the "newborn" phase.
The term is not used consistently. In pediatric/neonatal orthopedics it is used to describe unstable/dislocatable hips and poorly developed acetabula. For adults it describes hips showing abnormal femur head or acetabular x-rays.
Some sources prefer the term "hip dysplasia" over DDH, considering it to be "simpler and more accurate", partly because of the redundancy created by the use of the terms developmental and dysplasia. Types of DDH include subluxation, dysplasia, and dislocation. The main types are the result of either laxity of the supporting capsule or an abnormal acetabulum.
The diagnosis is usually initially made by a combination of physical exam and MRI of the shoulder, which can be done with or without the injection of intraarticular contrast. The presence of contrast allows for better evaluation of the glenoid labrum.
Treatment for Larsen syndrome varies according to the symptoms of the individual. Orthopedic surgery can be performed to correct the serious joint defects associated with Larsen syndrome. Reconstructive surgery can be used to treat the facial abnormalities. Cervical kyphosis can be very dangerous to an individual because it can cause the vertebrae to disturb the spinal cord. Posterior cervical arthrodesis has been performed on patients with cervical kyphosis, and the results have been successful Propranolol has been used to treat some of the cardiac defects associated with Marfan's syndrome, so the drug also has been suggested to treat cardiac defects associated with Larsen syndrome.
No surgical outcomes studies exist for evaluating the function of the thumbs after an on-top plasty reconstruction.
More severe types (Bayne type III en IV) of radial dysplasia can be treated with surgical intervention. The main goal of centralization is to increase hand function by positioning the hand over the distal ulna, and stabilizing the wrist in straight position. Splinting or soft-tissue distraction may be used preceding the centralization.
In classic centralization central portions of the carpus are removed to create a notch for placement of the ulna. A different approach is to place the metacarpal of the middle finger in line with the ulna with a fixation pin.
If radial tissues are still too short after soft-tissue stretching, soft tissue release and different approaches for manipulation of the forearm bones may be used to enable the placement of the hand onto the ulna. Possible approaches are shortening of the ulna by resection of a segment, or removing carpal bones. If the ulna is significantly bent, osteotomy may be needed to straighten the ulna. After placing the wrist in the correct position, radial wrist extensors are transferred to the extensor carpi ulnaris tendon, to help stabilize the wrist in straight position. If the thumb or its carpometacarpal joint is absent, centralization can be followed by pollicization. Postoperatively, a long arm plaster splinter has to be worn for at least 6 to 8 weeks. A removable splint is often worn for a long period of time.
Radial angulation of the hand enables patients with stiff elbows to reach their mouth for feeding; therefore treatment is contraindicated in cases of extension contracture of the elbow. A risk of centralization is that the procedure may cause injury to the ulnar physis, leading to early epiphyseal arrest of the ulna, and thereby resulting in an even shorter forearm. Sestero et al. reported that ulnar growth after centralization reaches from 48% to 58% of normal ulnar length, while ulnar growth in untreated patients reaches 64% of normal ulnar length. Several reviews note that centralization can only partially correct radial deviation of the wrist and that studies with longterm follow-up show relapse of radial deviation.
In cases of a minor deviation of the wrist, treatment by splinting and stretching alone may be a sufficient approach in treating the radial deviation in RD. Besides that, the parent can support this treatment by performing passive exercises of the hand. This will help to stretch the wrist and also possibly correct any extension contracture of the elbow. Furthermore, splinting is used as a postoperative measure trying to avoid a relapse of the radial deviation.
The lesion is associated with any damage to the antero-inferior labrum. Most commonly due to anterior shoulder dislocation. The lesion often occurs after the initial dislocation. In chronic cases there may be fibrosis and resynovialization of the labrum and periosteum.
The lesion is best identified on MR arthrography. Additional views in "ABER" (ABduction and External Rotation) of the shoulder aid in this diagnosis.
Differential diagnoses include:
- Bankart lesion
- Bankart lesion
- Alpsa lesion
- GLAD
- HAGL
- BHAGL
Treatment is surgical re-attachment of the labrum preferably via arthroscopy.
This type of procedure is recommended for Wassel types 1 and 2 (in which both thumbs are severely hypoplastic) by some congenital hand surgeons. The technique contains a composite wedge resection of the central bone and soft-tissue. This will be achieved with approach of the lateral tissue of each thumb. The goal is to achieve a normal thumb, what concerns the size, which is possible. If the width of the nail bed is greater than 70% of the contralateral thumb, it may be split. Then the nail bed will be repaired precisely.
It is sometimes possible to correct the problem with surgery, though this has high failure rates for treatment of post-traumatic radioulnar synostosis.
Arthroscopic repair of Bankart injuries have high success rates, with studies showing that nearly one-third of patients require re-intervention for continued shoulder instability following repair. Options for repair include an arthroscopic technique or a more invasive open Latarjet procedure, with the open technique tending to have a lower incidence of recurrent dislocation, but also a reduced range of motion following surgery.
Osteoarthritis between the radius bone and the carpals is indicated by a "radiocarpal joint space" of less than 2mm.
X-rays can be very helpful in diagnosing and differentiating between SNAC and SLAC wrists. On the other hand, X-rays are not always sufficient to distinguish between different stages. It is important to note that both hands need to be compared. Therefore, two X-rays are needed: one from the left and one from the right hand. When the X-ray is inconclusive, wrist arthroscopy can be performed.
SLAC
Because the scapholunate ligament is ruptured, the scaphoid and lunate are not longer connected. This results in a larger space between the two bones, also known as the Terry Thomas sign. A space larger than 3 mm is suspicious and a space larger than 5 mm is a proven SLAC pathology. Scaphoid instability due to the ligament rupture can be stactic or dynamic. When the X-ray is diagnostic and there is a convincing Terry Thomas sign it is a static scaphoid instability. When the scaphoid is made unstable by either the patient or by manipulation by the examining physician it is a dynamic instability.
In order to diagnose a SLAC wrist you need a posterior anterior (PA) view X-ray, a lateral view X-ray and a fist view X-ray. The fist X-ray is often made if there is no convincing Terry Thomas sign. A fist X-ray of a scapholunate ligament rupture will show a descending capitate. Making a fist will give pressure at the capitate, which will descend if there is a rupture in the scapholunate ligament.
SNAC
In order to diagnose a SNAC wrist you need a PA view X-ray and a lateral view X-ray. As in SLAC, the lateral view X-ray is performed to see if there is a DISI.
Computed tomography (CT) or Magnetic Resonance Imaging (MRI) are rarely used to diagnose SNAC or SLAC wrist osteoarthritis because there is no additional value. Also, these techniques are much more expensive than a standard X-ray. CT or MRI may be used if there is a strong suspicion for another underlying pathology or disease.
First options for treatment are conservative, using hot or cold packs, rest and NSAID's at first. If no improvement is made, a splint or brace can be used to keep the deviated arm straight. When none of the conservative treatments work surgical intervention is designated.
The decisions involved in the repair of the Hill–Sachs lesion are complex. First, it is not repaired simply because of its existence, but because of its association with continuing symptoms and instability. This may be of greatest importance in the under-25-year-old and in the athlete involved in throwing activities. The Hill-Sachs role in continuing symptoms, in turn, may be related to its size and large lesions, particularly if involving greater than 20% of the articular surface, may impinge on the glenoid fossa (engage), promoting further episodes of instability or even dislocation. Also, it is a fracture, and associated bony lesions or fractures may coexist in the glenoid, such as the so-called bony Bankart lesion. Consequently, its operative treatment may include some form of bony augmentation, such as the Latarjet or similar procedure. Finally, there is no guarantee that associated non-bony lesions, such as a Bankart lesion, SLAP tear, or biceps tendon injury, may not be present and require intervention.
Radial aplasia is a congenital defect which affects the formation of the radius bone in the arm. The radius is the lateral bone which connects to the wrist via articulation with the carpal bones. A child born with this condition has either a short or absent radius bone in one or both of his or her arm(s). Radial aplasia also results in the thumb being either partly formed or completely absent from the hand. Radial aplasia is connected with the condition VACTERL association. The cause for radial aplasia in unknown, but it widely believed to occur within the first ten weeks of gestation.
Imaging diagnosis conventionally begins with plain film radiography. Generally, AP radiographs of the shoulder with the arm in internal rotation offer the best yield while axillary views and AP radiographs with external rotation tend to obscure the defect. However, pain and tenderness in the injured joint make appropriate positioning difficult and in a recent study of plain film x-ray for Hill–Sachs lesions, the sensitivity was only about 20%. i.e. the finding was not visible on plain film x-ray about 80% of the time.
By contrast, studies have shown the value of ultrasonography in diagnosing Hill–Sachs lesions. In a population with recurrent dislocation using findings at surgery as the gold standard, a sensitivity of 96% was demonstrated. In a second study of patients with continuing shoulder instability after trauma, and using double contrast CT as a gold standard, a sensitivity of over 95% was demonstrated for ultrasound. It should be borne in mind that in both those studies, patients were having continuing problems after initial injury, and therefore the presence of a Hill–Sachs lesion was more likely. Nevertheless, ultrasonography, which is noninvasive and free from radiation, offers important advantages.
MRI has also been shown to be highly reliable for the diagnosis of Hill-Sachs (and Bankart) lesions. One study used challenging methodology. First of all, it applied to those patients with a single, or first time, dislocation. Such lesions were likely to be smaller and therefore more difficult to detect. Second, two radiologists, who were blinded to the surgical outcome, reviewed the MRI findings, while two orthopedic surgeons, who were blinded to the MRI findings, reviewed videotapes of the arthroscopic procedures. Coefficiency of agreement was then calculated for the MRI and arthroscopic findings and there was total agreement ( kappa = 1.0) for Hill-Sachs and Bankart lesions.
"Ulna reduction"
Adults with Madelung’s deformity may suffer from ulnar-sided wrist pain. Madelung's Deformity is usually treated by treating the distal radial deformity. However, if patients have a positive ulnar variance and focal wrist pathology, it’s possible to treat with an isolated ulnar-shortening osteotomy. In these patients the radial deformity is not treated.
The ulna is approached from the subcutaneous border. A plate is attached to the distal end of the ulna, to plan the osteotomy. An oblique segment is removed from the ulna, after which the distal radial-ulnar joint is freed, making sure structures stay attached to the styloid process. After this, the freed distal end is reattached to the proximal ulna with the formerly mentioned plate.
"Total DRUJ replacement"
An alternative treatment for patients with ulnar-sided wristpain is a total replacement of the distal radial-ulnar joint. There are many surgical treatments of the condition, but most of these only improve the alignment and function of the radiocarpal joint. A persistent problem in these treatments has been the stiff DRUJ. However, a prosthesis helps in managing the pain, and might also improve the range of motion of the wrist.
The procedure consists of making a hockey-stick shaped incision along the ulnar border. This incision is made between the fifth and sixth dorsal compartment. Being careful not to harm any essential structures, like the posterior interosseous nerve, the incision is continued between the extensor carpi ulnaris and the extensor digiti quinti, until the ulna is found. The ulnar head is then removed. A guide wire is then inserted in the medullary canal of the ulna, allowing centralization for a cannulated drill bit. A poly-ethylene ball, which will serve as the prosthesis, is then placed over the distal peg. After confirming full range of motion, the skin will be closed.
"Dome Osteotomy"
In case of Madelung's Deformity in conjunction with radial pain, a dome osteotomy may be conducted. For more information about this procedure, please refer to the treatment of Madelung's Deformity in children.
MRI imaging can be used to detect whether the abducens nerve is present.
Examination will often show tenderness at the radioscaphoid joint (when palpated or while moving the radioscaphoid joint), dorsal radial swelling and instability of the wrist joint. Notice that people may say they have trouble with rising from a chair when pressure is exerted on the hands by pushing against the handrail. Younger people may complain about not being able to do push-ups anymore because of a painful hand.
There are a number of tests and actions that can be performed when a patient is suspected of having osteoarthritis caused by SLAC or SNAC.
SLAC:
- Tenderness 1 cm above Lister’s Tubercle
Tests:
- Watson's test
- Finger extension test
SNAC:
- Tenderness at the anatomical snuff box
- Painful pronation and supination when performed against resistance
- Pain during axial pressure
Evaluations by certain specialists should be performed following the initial diagnosis of Duane-radial ray syndrome. These evaluations will be used to determine the extent of the disease as well as the needs of the individual.
- Eyes - Complete eye exam by an ophthalmologist especially focusing on the extraocular movements of the eye and the structural eye defects
- Heart - evaluation by a cardiologist along with an echocardiogram and ECG
- Kidneys - Laboratory tests to check kidney function and a renal ultrasound
- Hearing
- Endocrine - evaluation for growth hormone deficit if growth retardation present
- Blood - CBC to check for thrombocytopenia and leukocytosis
- Clinical genetics consultation
Post-traumatic cases are most likely to develop following surgery for a forearm fracture, this is more common with high-energy injuries where the bones are broken into many pieces (comminuted). It can also develop following soft tissue injury to the forearm where there is haematoma formation.
Diagnosis is made on plain radiograph of the foot, although the extent of injury is often underestimated.
Treatment comprises early reduction of the dislocation, and frequently involves open reduction internal fixation to restore and stabilise the talonavicular joint. Open reduction and fusion of the calcaneocuboid joint is occasionally required.
A retrolisthesis is a posterior displacement of one vertebral body with respect to the subjacent vertebra to a degree less than a luxation (dislocation). Retrolistheses are most easily diagnosed on lateral x-ray views of the spine. Views, where care has been taken to expose for a true lateral view without any rotation, offer the best diagnostic quality.
Retrolistheses are found most prominently in the cervical spine and lumbar region but can also be seen in the thoracic area.