Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Although not yet formally incorporated in the generally accepted classification systems, molecular profiling of myelodysplastic syndrome genomes has increased the understanding of prognostic molecular factors for this disease. For example, in low-risk MDS, "IDH1" and "IDH2" mutations are associated with significantly worsened survival.
The outlook in MDS is variable, with about 30% of patients progressing to refractory AML. The median survival rate varies from years to months, depending on type. Stem-cell transplantation offers possible cure, with survival rates of 50% at 3 years, although older patients do poorly.
Indicators of a good prognosis:
Younger age; normal or moderately reduced neutrophil or platelet counts; low blast counts in the bone marrow (< 20%) and no blasts in the blood; no Auer rods; ringed sideroblasts; normal or mixed karyotypes without complex chromosome abnormalities; and "in vitro" marrow culture with a nonleukemic growth pattern
Indicators of a poor prognosis:
Advanced age; severe neutropenia or thrombocytopenia; high blast count in the bone marrow (20-29%) or blasts in the blood;
Auer rods; absence of ringed sideroblasts; abnormal localization or immature granulocyte precursors in bone marrow section;
completely or mostly abnormal karyotypes, or complex marrow chromosome abnormalities and "in vitro" bone marrow culture with a leukemic growth pattern
Karyotype prognostic factors:
- Good: normal, -Y, del(5q), del(20q)
- Intermediate or variable: +8, other single or double anomalies
- Poor: complex (>3 chromosomal aberrations); chromosome 7 anomalies
The IPSS is the most commonly used tool in MDS to predict long-term outcome.
Cytogenetic abnormalities can be detected by conventional cytogenetics, a FISH panel for MDS, or virtual karyotype.
Following observation of the symptoms, the patients need to get complete blood counts and a bone marrow examination. If the patient has leukemia, the morphology and immunophenotype check is needed to make sure the type of leukemia.
The morphology of the blast in BAL is not certain. The cells could display both myeloid lineage and lymphoid or undifferentiated morphology. Therefore, the diagnosis cannot based on the morphology result. The immunophenotype check is the most important basis of the diagnosis of BAL.
Before 2008, the diagnosis of BAL was based on a score system proposed by the European Group for the Immunological Classification of Leukemias (EGIL) which could differentiate from other kinds of acute leukemia. The table shows this method.
If the score of only one lineage is higher than 2, the acute leukemia could be acute myeloid leukemia (AML) or acute lymphoblastic leukemia (ALL). According to the original EGIL scoring system BAL is defined when scores are over two points for both myeloid and T- or B- lymphoid lineages.
In 2008, WHO established a new and strict criteria standard for diagnosis of BAL. The presence of specific T-lymphoid antigens, cytoplasmic CD3 (cCD3), MPO and CD 19 became the most important standard for recognizing the lineage. Other B-lineage markers (CD22, CD79a, CD 10) and monocytic markers are also needed. Table 2 shows the method.
Compared with the EGIL scoring system, the current 2008 WHO criteria applied less but more specific markers to define the lineage of the blasts, and incorporated the intensity of markers expression into the diagnostic algorithm.
The diagnosis of BAL is so difficult that sometimes is misdiagnosed with AML or ALL because the morphology thus the therapy would not have a good effect.
Diagnosing ALL begins with a thorough medical history, physical examination, complete blood count, and blood smears. While many symptoms of ALL can be found in common illnesses, persistent or unexplained symptoms raise suspicion of cancer. Because many features on the medical history and exam are not specific to ALL, further testing is often needed. A large number of white blood cells and lymphoblasts in the circulating blood can be suspicious for ALL because they indicate a rapid production of lymphoid cells in the marrow. The higher these numbers typically points to a worse prognosis. While white blood cell counts at initial presentation can vary significantly, circulating lymphoblast cells are seen on peripheral blood smears in the majority of cases.
A bone marrow biopsy provides conclusive proof of ALL, typically with >20% of all cells being leukemic lymphoblasts. A lumbar puncture (also known as a spinal tap) can determine whether the spinal column and brain have been invaded. Brain and spinal column involvement can be diagnosed either through confirmation of leukemic cells in the lumbar puncture or through clinical signs of CNS leukemia as described above. Laboratory tests that might show abnormalities include blood count, kidney function, electrolyte, and liver enzyme tests.
Pathological examination, cytogenetics (in particular the presence of Philadelphia chromosome), and immunophenotyping establish whether the leukemic cells are myeloblastic (neutrophils, eosinophils, or basophils) or lymphoblastic (B lymphocytes or T lymphocytes). Cytogenetic testing on the marrow samples can help classify disease and predict how aggressive the disease course will be. Different mutations have been associated with shorter or longer survival. Immunohistochemical testing may reveal TdT or CALLA antigens on the surface of leukemic cells. TdT is a protein expressed early in the development of pre-T and pre-B cells, whereas CALLA is an antigen found in 80% of ALL cases and also in the "blast crisis" of CML.
Medical imaging (such as ultrasound or CT scanning) can find invasion of other organs commonly the lung, liver, spleen, lymph nodes, brain, kidneys, and reproductive organs.
The prognosis for BAL patients is not good which is worse than ALL and AML. Medical Blood Institute reported cases of CR rate was 31.6%, with a median remission are less than 6 months
The median survival time is only 7.5 months. The life quality is also low because the immune function of patient is damaged seriously. They have to stay in hospital and need 24h care.
In another study, the results showed that young age, normal karyotype and ALL induction therapy will have a better prognosis than Ph+, adult patients. The study shows median survival of children is 139 months versus 11 months of adults, 139 months for normal karyotype patients versus 8 months for ph+ patients.
Cytogenetic analysis has shown different proportions and frequencies of genetic abnormalities in cases of ALL from different age groups. This information is particularly valuable for classification and can in part explain different prognosis of these groups. In regards to genetic analysis, cases can be stratified according to ploidy, number of sets of chromosomes in the cell, and specific genetic abnormalities, such as translocations. Hyperdiploid cells are defined as cells with more than 50 chromosomes, while hypodiploid is defined as cells with less than 44 choromosomes. Hyperdiploid cases tend to carry good prognosis while hypodiploid cases do not. For example, the most common specific abnormality in childhood B-ALL is the t(12;21) "ETV6"-"RUNX1" translocation, in which the "RUNX1" gene, encoding a protein involved in transcriptional control of hemopoiesis, has been translocated and repressed by the "ETV6"-"RUNX1" fusion protein.
Below is a table with the frequencies of some cytogenetic translocations and molecular genetic abnormalities in ALL.
Flow cytometry is a diagnostic tool in order to count/visualize the amount of lymphatic cells in the body. T cells, B cells and NK cells are nearly impossible to distinguish under a microscope, therefore one must use a flow cytometer to distinguish them.
The 5 year survival has been noted as 89% in at least one study from France of 201 patients with T-LGL leukemia.
Clonal rearrangements of the T-cell receptor (TCR) genes are a necessary condition for the diagnosis of this disease. The gene for the β chain of the TCR is found to be rearranged more often than the γ chain. of the TCR.
T-PLL is an extremely rare aggressive disease, and patients are not expected to live normal lifespans. Before the recent introduction of better treatments, such as alemtuzumab, the median survival time was 7.5 months after diagnosis. More recently, some patients have survived five years and more, although the median survival is still low.
ANKL is treated similarly to most B-cell lymphomas. Anthracycline-containing chemotherapy regimens are commonly offered as the initial therapy. Some patients may receive a stem cell transplant.
Most patients will die 2 years after diagnosis.
T-PLL has the immunophenotype of a mature (post-thymic) T-lymphocyte, and the neoplastic cells are typically positive for pan-T antigens CD2, CD3, and CD7 and negative for TdT and CD1a. The immunophenotype CD4+/CD8- is present in 60% of cases, the CD4+/CD8+ immunophenotype is present in 25%, and the CD4-/CD8+ immunophenotype is present in 15% of cases.
While the bone marrow is commonly involved, the detection of the neoplastic infiltrate may be difficult due to diffuse, interstitial pattern. Immunohistochemistry can aid in the detection of this lymphoma.
The typical patient with angioimmunoblastic T-cell lymphoma (AITL) is either middle-aged or elderly, and no gender preference for this disease has been observed. AITL comprises 15–20% of peripheral T-cell lymphomas and 1–2% of all non-Hodgkin lymphomas.
Refractory anemia with excess of blasts (RAEB) is a type of myelodysplastic syndrome with a marrow blast percentage of 5% to 19%.
In MeSH, "Smoldering leukemia" is classified under RAEB.
The prognosis varies according with the type of ALCL. During treatment, relapses may occur but these typically remain sensitive to chemotherapy.
Those with ALK positivity have better prognosis than ALK negative ALCL. It has been suggested that ALK-negative anaplastic large-cell lymphomas derive from other T-cell lymphomas that are morphologic mimics of ALCL in a final common pathway of disease progression. Whereas ALK-positive ALCLs are molecularly characterized and can be readily diagnosed, specific immunophenotypic or genetic features to define ALK-negative ALCL are missing and their distinction from other T-cell non-Hodgkin lymphomas (T-NHLs) remains controversial, although promising diagnostic tools for their recognition have been developed and might be helpful to drive appropriate therapeutic protocols.
Systemic ALK+ ALCL 5-year survival: 70–80%.
Systemic ALK- ALCL 5-year survival: 15–45%.
Primary Cutaneous ALCL: Prognosis is good if there is not extensive involvement regardless of whether or not ALK is positive with an approximately 90% 5-year survival rate.
Breast implant-associated ALCL has an excellent prognosis when the lymphoma is confined to the fluid or to the capsule surrounding the breast implant. This tumor can be recurrent and grow as a mass around the implant capsule or can extend to regional lymph nodes if not properly treated.
The hallmark cells (and variants) show immunopositivity for CD30 (also known as Ki-1). True positivity requires localisation of signal to the cell membrane and/or paranuclear region (cytoplasmic positivity is considered non-specific and non-informative). Another useful marker which helps to differentiate this lesion from Hodgkin lymphoma is Clusterin. The neoplastic cells have a golgi staining pattern (hence paranuclear staining), which is characteristic of this lymphoma. The cells are also typically positive for a subset of markers of T-cell lineage. However, as with other T-cell lymphomas, they are usually negative for the pan T-cell marker CD3. Occasional examples are of null (neither T nor B) cell type. These lymphomas show immunopositivity for ALK protein in 70% of cases. They are also typically positive for EMA. In contrast to many B-cell anaplastic CD30 positive lymphomas, they are negative for markers of Epstein–Barr virus (EBV).
Clonal T-cell receptor gene rearrangements are detected in 75% of cases, and immunoglobin gene rearrangements are seen in 10% of cases, and these cases are believed to be due to expanded EBV-driven B-cell populations. Similarly, EBV-related sequences can be detected in most cases, usually in B-cells but occasionally in T-cells. Trisomy 3, trisomy 5, and +X are the most frequent chromosomal abnormalities found in AITL cases.
The immunophenotype for hepatosplenic T-cell lymphoma is a post-thymic, immature T-cell.
Romidepsin, vorinostat and a few others are a second-line drug for cutaneous T-cell lymphoma. Mogamulizumab has been approved in Japan and waiting FDA approval in the United States. There are dozens of clinical trials, with a few in Phase III.
Diagnosis of X-SCID is possible through lymphocyte cell counts, lymphocyte function tests, and genetic testing. A healthy immune system should contain large amounts of lymphocytes, but individuals with X-SCID will contain unusually small amounts of T-cells, non-functional B-cells, and some natural killer cells.
Individuals with X-SCID often have decreased lymphocyte function. This can be tested through the introduction of agents to the immune system; the reaction of the lymphocytes is then observed. In X-SCID, Antibody responses to introduced vaccines and infections are absent, and T-cell responses to mitogens, substances that stimulate lymphocyte transformation, are deficient. IgA and IgM immunoglobulins, substances that aid in fighting off infections, are very low.
The absence of a thymic shadow on chest X-rays is also indicative of X-SCID. In a normal child, a distinctive sailboat shaped shadow near the heart can be seen. The thymus gland in normal patients will gradually decrease in size because the need for the thymus gland diminishes. The decrease in the size of the thymus gland occurs because the body already has a sufficient number of developed T-cells. However, a patient with X-SCID will be born with an abnormally small thymus gland at birth. This indicates that the function of thymus gland, of forming developed T-cells, has been impaired.
Since the mutation in X-SCID is X-linked, there are genetic tests for detecting carriers in X-SCID pedigrees. One method is to look for family-specific IL2RG mutations. Finally, if none of those options are available, there is an unusual pattern of nonrandom X-chromosome inactivation on lymphocytes in carriers, thus looking for such inactivation would prove useful.
If a mother is pregnant and the family has a known history of immunodeficiency, then doctors may perform diagnostic assessment in-utero. Chorionic Villus Sampling, which involves sampling of the placental tissue using a catheter inserted through the cervix, can be performed 8 to 10 weeks into gestation. Alternatively, Amniocentesis, which entails extracting a sample of the fluid which surrounds the fetus, can be performed 15 to 20 weeks into gestation.
Early detection of X-SCID (and other types of SCID) is also made possible through detection of T-cell recombination excision circles, or TRECs. TRECs are composed of excised DNA fragments which are generated during normal splicing of T-cell surface antigen receptors and T-cell maturation. This maturation process is absent across all SCID variants, as evidenced by the low counts of T-lymphocytes. The assay is performed using dried blood from a Guthrie card, from which DNA is extracted. Quantitative PCR is then performed and the number of TRECs determined. Individuals who have the SCID phenotype will have TREC counts as low as <30, compared to approximately 1020 for a healthy infant. A low TREC count indicates that there is insufficient development of T-cells in the thymus gland. This technique can predict SCID even when lymphocyte counts are within the normal range. Newborn screening of X-SCID based on TREC count in dried blood samples has recently been introduced in several states in the United States including California, Colorado, Connecticut, Delaware, Florida, Massachusetts, Michigan, Minnesota, Mississippi, New York, Texas, and Wisconsin. In addition, pilot trials are being performed in several other states beginning in 2013.
According to the Peripheral T-Cell Lymphoma Project, median overall survival is ten months, while median failure-free survival is only six months . The peripheral index for T-cell lymphoma is useful in defining prognosis for enteropathy-associated T-cell lymphoma. Among the most influential prognostic factors is bulky disease, defined by a tumor mass greater than 5 cm.
Autologous stem cell transplantation is feasible for selected patients with enteropathy-associated T-cell lymphoma and can yield durable disease control in a significant proportion of these patients. One study found a trend for better survival in patients transplanted in first complete or partial remission at four years (66% vs. 36%; P = .062).
PTLD may spontaneously regress on reduction or cessation of immunosuppressant medication, and can also be treated with addition of anti-viral therapy. In some cases it will progress to non-Hodgkin's lymphoma and may be fatal. A phase 2 study of adoptively transferred EBV-specific T cells demonstrated high efficacy with minimal toxicity.
Acute leukemia or acute leukaemia is a family of serious medical conditions relating to an original diagnosis of leukemia. In most cases, these can be classified according to the lineage, myeloid or lymphoid, of the malignant cells that grow uncontrolled, but some are mixed and for those such an assignment is not possible.
Forms of acute leukemia include:
- Acute myeloid leukemia
- Acute erythroid leukemia
- Acute lymphoblastic leukemia
- T-cell acute lymphoblastic leukemia
- Adult T-cell leukemia/lymphoma
- (Precursor)T-lymphoblastic leukemia/lymphoma
- "Blast crisis" of chronic myelogenous leukemia
Precursor B-cell lymphoblastic leukemia is a form of lymphoid leukemia in which too many B-cell lymphoblasts (immature white blood cells) are found in the blood and bone marrow. It is the most common type of acute lymphoblastic leukemia (ALL). It is sometimes additionally classified as a lymphoma, as designated "leukemia/lymphoma".
It consists of the following subtypes:
- t(9;22)-BCR/ ABL
- t(v;11q23)-MLL rearrangement
- t(1;19)-E2A/PBX1
- t(12;21)-ETV/ CBFα
- t(17;19)-E2A-HLF