Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A thorough diagnosis should be performed on every affected individual, and siblings should be studied for deafness, parathyroid and renal disease. The syndrome should be considered in infants who have been diagnosed prenatally with a chromosome 10p defect, and those who have been diagnosed with well defined phenotypes of urinary tract abnormalities. Management consists of treating the clinical abnormalities at the time of presentation. Prognosis depends on the severity of the kidney disease.
The frequency is unknown, but the disease is considered to be very rare.
The diagnosis of this syndrome can be done via the test "Branchiootorenal syndrome via the SIX5 Gene" whose purpose is mutation confirmation and risk assessment (screening).
When accompanied by the combination of situs inversus (reversal of the internal organs), chronic sinusitis, and bronchiectasis, it is known as Kartagener syndrome (only 50% of primary ciliary dyskinesia cases include situs inversus).
When originally characterized by Giedion, there was a relatively high mortality rate due to untreated kidney failure (end stage renal disease - ESRD). The remarkable improvements in kidney transplantation have reduced the mortality of Conorenal Syndrome substantially if not eliminated it entirely. Most diagnosis of the disease occurs when children present with kidney failure – usually between the ages of 10 and 14. There are no known cures for the syndrome and management of the symptoms seems to be the typical approach.
Prevention for Alström Syndrome is considered to be harder compared to other diseases/syndromes because it is an inherited condition. However, there are other options that are available for parents with a family history of Alström Syndrome. Genetic testing and counseling are available where individuals are able to meet with a genetic counselor to discuss risks of having the children with the disease. The genetic counselor may also help determine whether individuals carry the defective ALSM1 gene before the individuals conceive a child. Some of the tests the genetic counselors perform include chorionic villus sampling (CVS), Preimplantation genetic diagnosis (PGD), and amniocentesis. With PGD, the embryos are tested for the ALSM1 gene and only the embryos that are not affected may be chosen for implantation via in vitro fertilization.
Several diagnostic tests for this condition have been proposed. These include nasal nitric oxide levels, light microscopy of biopsies for ciliary beat pattern and frequency and electron microscopic examination of dynein arms. Genetic testing has also been proposed but this is difficult given that there are multiple genes involved.
The treatment of branchio-oto-renal syndrome is done per each affected area (or organ). For example, a person with hearing problems should have appropriate supports and prompt attention for any inflammation of the ear.
A specialist should observe any kidney problems. Surgical repair may be needed depending on the degree of a defect or problem, whether a transplant or dialysis is needed.
It is possible to clinically detect Alström syndrome in infancy, but more frequently, it is detected much later, as doctors tend to detect symptoms as separate problems. Currently, Alström syndrome is often diagnosed clinically, since genetic testing is costly and only available on a limited basis.
A physical examination would be needed to properly diagnose the patient. Certain physical characteristics can determine if the patient has some type of genetic disorder. Usually, a geneticist would perform the physical examination by measuring the distance around the head, distance between the eyes, and the length of arms and legs. In addition, examinations for the nervous system or the eyes may be performed. Various imaging studies like computerized tomography scans (CT), Magnetic Resonance Imaging (MRI), or X-rays are used to see the structures within the body.
Family and personal medical history are required. Information about the health of an individual is crucial because it provides traces to a genetic diagnosis.
Laboratory tests, particularly genetic testing, are performed to diagnose genetic disorders. Some of the types of genetic testing are molecular, biochemical, and chromosomal. Other laboratory tests performed may measure levels of certain substances in urine and blood that can also help suggest a diagnosis.
Diagnosis depends on the clinical scenario. However, karyotyping is an essential test for diagnosis.
Conorenal syndrome, also called Mainzer-Saldino syndrome or Saldino-Mainzer disease, is a collection of medical conditions that seem to have a common genetic cause.
Birt–Hogg–Dubé can be difficult to diagnose from symptoms alone, because hereditary renal cancers, pneumothorax, and cutaneous tumors occur with other syndromes. Hereditary bilateral, multifocal kidney tumors similar to those seen in BHDcan occur with von Hippel–Lindau disease (clear cell renal cell carcinoma), hereditary papillary renal cancer (papillary renal cell carcinoma), and hereditary leiomyomatosis and renal cell cancer syndrome. They are differentiated with examination of the tumors' histology.
Hereditary recurrent pneumothorax or pulmonary cysts are associated with Marfan syndrome, Ehlers–Danlos syndrome, Tuberous Sclerosis Complex (TSC), alpha1-antitrypsin deficiency, and cystic fibrosis. Non-hereditary recurrent pneumothorax and/or pulmonary cysts can occur with Langerhans cell histiocytosis and lymphangioleiomyomatosis. These conditions are differentiated from Birt–Hogg–Dubé through examining the patient history and performing a physical examination. In women suspected to have the disease, ruling out pulmonary or thoracic endometriosis may be necessary.
Though fibrofolliculomas are unique to Birt–Hogg–Dubé, they may present with an ambiguous appearance and must be confirmed histologically. Other diseases can mimic the dermatologic manifestations of BHD, including tuberous sclerosis complex, Cowden syndrome, familial trichoepitheliomas, and multiple endocrine neoplasia type 1. Tuberous sclerosis must be distinguished because both disorders can present with angiofibromas on the face, though they are more common in tuberous sclerosis.
The cutaneous manifestations of Birt–Hogg–Dubé were originally described as fibrofolliculomas (abnormal growths of a hair follicle), trichodiscomas (hamartomatous lesions with a hair follicle at the periphery, often found on the face), and acrochordons (skin tags). Cutaneous manifestations are confirmed by histology. Most individuals (89%) with BHD are found to have multiple cysts in both lungs, and 24% have had one or more episodes of pneumothorax. The cysts can be detected by chest CT scan. Renal tumors can manifest as multiple types of renal cell carcinoma, but certain pathological subtypes (including chromophobe, oncocytoma, and oncocytic hybrid tumors) are more commonly seen. Although the original syndrome was discovered on the basis of cutaneous findings, it is now recognized that individuals with Birt–Hogg–Dubé may only manifest the pulmonary and/or renal findings, without any skin lesions. Though these signs indicate BHD, it is only confirmed with a genetic test for FLCN mutations.
Since Duane-radial ray syndrome is a genetic disorder, a genetic test would be performed. One test that can be used is the SALL4 sequence analysis that is used to detect if SALL4 is present. If there is no pathogenic variant observed, a deletion/duplication analysis can be ordered following the SALL4 sequence analysis. As an alternative, another genetic test called a multi-gene panel can be ordered to detect SALL4 and any other genes of interest. The methods used for this panel vary depending on the laboratory.
MRI imaging can be used to detect whether the abducens nerve is present.
There are no laboratory tests used to diagnose RVT.
Observing the patient's symptoms, medical history and imaging remain the fundamental source for diagnosing RVT. Imaging is used to detect the presence of a blood clot. In an abnormal kidney with RVT, a blood clot is present in the renal vein. In cases where the renal vein is suddenly and/or fully blocked, the kidneys will enlarge, reaching its maximum size within a week. An ultrasound imaging can be used to observe and track the size of the kidneys in RVT patients. Ultrasound is not efficient for use in detecting blood flow in the renal veins and artery. Instead a color doppler ultrasound may be used to detect renal blood flow. It is most commonly used to detect RVT in patients who have undergone renal transplantation. CT angiography is currently the top choice in diagnosing RVT. It is non-invasive, relatively cheap and fast with high accuracy. CT scanning can be used to detect renal enlargement, renal tumors, blood flow and other renal pathologies. An alternative is magnetic resonance angiography or MRA. It is non-invasive, fast and avoids radiation (unlike a CT scan) but it is relatively expensive. MRA produces detailed images of the renal blood flow, vesicle walls, the kidneys and any surrounding tissue. An inferior venocavography with selective venography can be used to rule out the diagnoses of RVT.
Nutcracker syndrome can be diagnosed with:
- Left renal venography—considered to be the gold standard test.
- Computed tomography (CT).
- Abdominal ultrasonography—not definitive but has been found to be useful.
This is much more common, but is not usually of any major health consequence, as long as the other kidney is healthy.
It may be associated with an increased incidence of Müllerian duct abnormalities, which are abnormalities of the development of the female reproductive tract and can be a cause of infertility, blocked menstrual flow (hematocolpos), increased need for Caesarean sections, or other problems. Herlyn-Werner-Wunderlich syndrome is one such syndrome in which unilaterial renal agenesis is combined with a blind hemivagina and uterus didelphys. Up to 40% of women with a urogenital tract anomaly also have an associated renal tract anomaly.
Adults with unilateral renal agenesis have considerably higher chances of hypertension (high blood pressure). People with this condition are advised to approach contact sports with caution.
The odds of a person being born with unilateral renal agenesis are approximately 1 in 750.
Inborn errors of renal tubular transport are metabolic disorders which lead to impairment in the ability of solutes, such as salts or amino acids, to be transported across the brush border of the renal tubule. This results in disruptions of renal reabsorption.
Examples of these disorders include Iminoglycinuria, renal tubular acidosis and Gitelman syndrome.
In 2008 researchers found autosomal dominant mutations in the RET and GDNF genes to be linked to renal agenesis in unrelated stillborn fetuses through PCR and direct sequence analysis . In the study, DNA from 33 stillborn fetuses were sequenced for mutations in RET, GDNF and GFRA1. Nineteen of the fetuses had BRA, ten had URA and 4 had congenital renal dysplasia. Seven of the 19 BRA fetuses were found to have a mutation in the RET gene (37%), while two of the ten URA fetuses did (20%). One of the URA fetuses had two RET mutations and one GDNF mutation. There were no GFRA1 mutations found.
However, the results of Skinner et al. study were questioned by a more recent study with a larger number of cases . In this study 105 fetuses were analyzed. Sixty-five fetuses had BRA while 24 had URA with an abnormal contralateral kidney. Mutations in the RET gene were only found in seven of the fetuses (6.6%).
In 2014 researchers found autosomal recessive mutations in ITGA8 in three members of two unrelated families utilizing Exome Sequencing . One of the families was consanguineous.
In 2017 researchers identified heritable autosomal dominant mutations in the gene GREB1L in two unrelated families as being the cause of both BRA and URA utilizing Exome Sequencing and direct sequencing analysis . This is the first reported genetic lesion implicated in the activation of Retinoic Acid Receptor (RAR) Targets that has been associated with renal agenesis in humans. The researchers found two different GREB1L mutations, each being unique to their respective pedigrees. In total, there were 23 individuals analyzed between the two families, four of which had BRA and five of which had URA. GREB1L mutations were identified in all of the affected individuals as well as in three unaffected family members, demonstrating incomplete penetrance and variable expressivity.
There are several hundred to perhaps several thousand genes that, if they had the right kind of mutation, could lead to renal agenesis in humans. It is possible that each individual or family experiencing renal agenesis has a unique gene or genetic mutation causing the condition due to the fact that there are so many genes that are critical to proper renal development. See Rosenblum S et al. for an excellent review of Congenital abnormalities of the Kidney and Urinary Tract
Chromosomal anomalies have been associated with BRA in certain cases (chromosomes 1, 2, 5 and 21), but these anomalies were not inherited and have not been observed in subsequent cases. Additionally, neither extreme substance abuse or environmental factors (high power line, mercury, ground water issues, etc.) have been reported to be linked to an increased incidence of BRA or other cause of Potter sequence. However, renal agenesis and other causes of oligohydramnios sequence have been linked to a number of other conditions and syndromes to include Down syndrome, Kallmann syndrome, branchio-oto-renal syndrome and others.
Treatment for NPS varies depending on the symptoms observed.
- Perform screening for renal disease and glaucoma, surgery, intensive physiotherapy, or genetic counseling.
- ACE inhibitors are taken to treat proteinuria and hypertension in NPS patients.
- Dialysis and renal transplant.
- Physical therapy, bracing and analgesics for joint pain.
- Other surgery treatments such as patella realignment, joint replacement, and the cutting away of the head of radius.
In the presence of suspicious symptoms a number of test are helpful in the diagnosis:
- Muscle enzymes are often elevated, i.e. creatine kinase
- Anti-Jo-1 antibody testing
- Electromyography
- Muscle biopsy
- Pulmonary function testing
- Lung biopsy
In certain situations, testing of other antibodies, specific imaging (MRI, thoracic high resolution computed tomography), and swallowing evaluation may be needed.
Abderhalden–Kaufmann–Lignac syndrome (AKL syndrome), also called Abderhalden–Lignac–Kaufmann disease or nephropathic cystinosis, is an autosomal recessive renal disorder of childhood comprising cystinosis and renal rickets.
It is named for Mary Holt and Samuel Oram, who published a paper on it in 1960.
Affected children are developmentally delayed with dwarfism, rickets and osteoporosis. Renal tubular disease is usually present causing aminoaciduria, glycosuria and hypokalemia.
Cysteine deposition is most evident in the conjunctiva and cornea.