Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Diagnosis is typically based on a person's signs and symptoms. The color of the sputum does not indicate if the infection is viral or bacterial. Determining the underlying organism is typically not needed. Other causes of similar symptoms include asthma, pneumonia, bronchiolitis, bronchiectasis, and COPD. A chest X-ray may be useful to detect pneumonia.
Another common sign of bronchitis is a cough which lasts ten days to three weeks. If the cough lasts a month or a year it may be chronic bronchitis. In addition to having a cough a fever may be present. Acute bronchitis is normally caused by a viral infection. Typically these infections are rhinovirus, para influenza, or influenza. No specific testing is normally needed to diagnose acute bronchitis.
Prevention is by not smoking and avoiding other lung irritants. Frequent hand washing may also be protective. Treatment of acute bronchitis typically involves rest, paracetamol (acetaminophen), and NSAIDs to help with the fever. Cough medicine has little support for its use and is not recommended in children less than six years of age. There is tentative evidence that salbutamol may be useful in those with wheezing; however, it may result in nervousness and tremors. Antibiotics should generally not be used. An exception is when acute bronchitis is due to pertussis. Tentative evidence supports honey and pelargonium to help with symptoms. Getting plenty of rest and fluids is also often recommended.
An oral whole cell nontypeable Haemophilus influenzae vaccine may protect against the disease, but "the evidence is mixed".
The diagnostic criteria for acute exacerbation of COPD generally include a production of sputum that is purulent and may be thicker than usual, but without evidence of pneumonia (which involves mainly the alveoli rather than the bronchi). Also, diagnostic criteria may include an increase in frequency and severity of coughing, as well as increased shortness of breath.
A chest X-ray is usually performed on people with fever and, especially, hemoptysis (blood in the sputum), to rule out pneumonia and get information on the severity of the exacerbation. Hemoptysis may also indicate other, potentially fatal, medical conditions.
A history of exposure to potential causes and evaluation of symptoms may help in revealing the cause the exacerbation, which helps in choosing the best treatment. A sputum culture can specify which strain is causing a bacterial AECB. An early morning sample is preferred.
E-nose showed the ability to smell the cause of the exacerbation.
The definition of a COPD exacerbation is commonly described as "lost in translation," meaning that there is no universally accepted standard with regard to defining an acute exacerbation of COPD. Many organizations consider it a priority to create such a standard, as it would be a major step forward in the diagnosis and quality of treatment of COPD.
A physical examination will often reveal decreased intensity of breath sounds, wheezing, rhonchi, and prolonged expiration. Most physicians rely on the presence of a persistent dry or wet cough as evidence of bronchitis.
A variety of tests may be performed in patients presenting with cough and shortness of breath:
- A chest X-ray is useful to exclude pneumonia which is more common in those with a fever, fast heart rate, fast respiratory rate, or who are old.
- A sputum sample showing neutrophil granulocytes (inflammatory white blood cells) and culture showing that has pathogenic microorganisms such as "Streptococcus" species.
- A blood test would indicate inflammation (as indicated by a raised white blood cell count and elevated C-reactive protein).
Acute exacerbations can be partially prevented. Some infections can be prevented by vaccination against pathogens such as influenza and "Streptococcus pneumoniae". Regular medication use can prevent some COPD exacerbations; long acting beta-adrenoceptor agonists (LABAs), long-acting anticholinergics, inhaled corticosteroids and low-dose theophylline have all been shown to reduce the frequency of COPD exacerbations. Other methods of prevention include:
- Smoking cessation and avoiding dust, passive smoking, and other inhaled irritants
- Yearly influenza and 5-year pneumococcal vaccinations
- Regular exercise, appropriate rest, and healthy nutrition
- Avoiding people currently infected with e.g. cold and influenza
- Maintaining good fluid intake and humidifying the home, in order to help reduce the formation of thick sputum and chest congestion.
A 2014 systematic review of clinical trials does not support using routine rapid viral testing to decrease antibiotic use for children in emergency departments. It is unclear if rapid viral testing in the emergency department for children with acute febrile respiratory infections reduces the rates of antibiotic use, blood testing, or urine testing. The relative risk reduction of chest x-ray utilization in children screened with rapid viral testing is 77% compared with controls. In 2013 researchers developed a breath tester that can promptly diagnose lung infections.
Flavorings-related lung disease can be prevented with the use of engineering controls (e.g. exhaust hoods or closed systems), personal protective equipment, monitoring of potentially affected workers, worker education, and by not using lung-disease-causing flavorings.
Antibiotics do not help the many lower respiratory infections which are caused by parasites or viruses. While acute bronchitis often does not require antibiotic therapy, antibiotics can be given to patients with acute exacerbations of chronic bronchitis. The indications for treatment are increased dyspnoea, and an increase in the volume or purulence of the sputum. The treatment of bacterial pneumonia is selected by considering the age of the patient, the severity of the illness and the presence of underlying disease. Amoxicillin and doxycycline are suitable for many of the lower respiratory tract infections seen in general practice.
Vaccination helps prevent bronchopneumonia, mostly against influenza viruses, adenoviruses, measles, rubella, streptococcus pneumoniae, haemophilus influenzae, diphtheria, bacillus anthracis, chickenpox, and bordetella pertussis.
Bronchiolitis obliterans is often misdiagnosed as asthma, chronic bronchitis, emphysema or pneumonia.
Several tests are often needed to correctly diagnose bronchiolitis obliterans, including chest X-rays, diffusing capacity of the lung tests (DLCO), spirometry, lung volume tests, high-resolution CT (HRCT), and lung biopsy. Diffusing capacity of the lung (DLCO) tests are usually normal; people with early-stage BO are more likely to have normal DLCO. Spirometry tests usually show fixed airway obstructions and sometimes restriction, where the lungs can't expand fully. Lung volume tests may show hyperinflation (excessive air in lungs caused by air trapping). HRCT can also show air trapping when the person being scanned breathes out completely; it can also show thickening in the airway and haziness in the lungs. Transthoracic lung biopsies are preferable for diagnosis of constrictive BO compared to transbronchial biopsies; regardless of the type of biopsy, a diagnosis may only be achieved by examination of multiple samples.
Normal surgical masks and N95 masks appear equivalent with respect to preventing respiratory infections.
COPD may need to be differentiated from other causes of shortness of breath such as congestive heart failure, pulmonary embolism, pneumonia, or pneumothorax. Many people with COPD mistakenly think they have asthma. The distinction between asthma and COPD is made on the basis of the symptoms, smoking history, and whether airflow limitation is reversible with bronchodilators at spirometry. Tuberculosis may also present with a chronic cough and should be considered in locations where it is common. Less common conditions that may present similarly include bronchopulmonary dysplasia and obliterative bronchiolitis. Chronic bronchitis may occur with normal airflow and in this situation it is not classified as COPD.
A number of methods can determine how much COPD is affecting a given individual. The modified British Medical Research Council questionnaire or the COPD assessment test (CAT) are simple questionnaires that may be used to determine the severity of symptoms. Scores on CAT range from 0–40 with the higher the score, the more severe the disease. Spirometry may help to determine the severity of airflow limitation. This is typically based on the FEV expressed as a percentage of the predicted "normal" for the person's age, gender, height, and weight. Both the American and European guidelines recommended partly basing treatment recommendations on the FEV. The GOLD guidelines suggest dividing people into four categories based on symptoms assessment and airflow limitation. Weight loss and muscle weakness, as well as the presence of other diseases, should also be taken into account.
Bronchiectasis may be diagnosed clinically or on review of imaging. The British Thoracic Society recommends all non-cystic-fibrosis-related bronchiectasis be confirmed by CT. CT may reveal tree-in-bud abnormalities, dilated bronchi, and cysts with defined borders.
Other investigations typically performed at diagnosis include blood tests, sputum cultures, and sometimes tests for specific genetic disorders.
According to a Cochrane review, single oral dose of nasal decongestant in the common cold is modestly effective for the short term relief of congestion in adults; however, "there is insufficient data on the use of decongestants in children." Therefore, decongestants are not recommended for use in children under 12 years of age with the common cold. Oral decongestants are also contraindicated in patients with hypertension, coronary artery disease, and history of bleeding strokes.
The Centers for Disease Control describe protocol for treating sinusitis while at the same time discouraging overuse of antibiotics:
- Target likely organisms with first-line drugs: Amoxicillin, Amoxicillin/Clavulanate
- Use shortest effective course: Should see improvement in 2–3 days. Continue treatment for 7 days after symptoms improve or resolve (usually a 10–14 day course).
- Consider imaging studies in recurrent or unclear cases: some sinus involvement is frequent early in the course of uncomplicated viral URI
Treatment comprises symptomatic support usually via analgesics for headache, sore throat and muscle aches. Moderate exercise in sedentary subjects with naturally acquired URTI probably does not alter the overall severity and duration of the illness. No randomized trials have been conducted to ascertain benefits of increasing fluid intake.
Respiratory diseases may be investigated by performing one or more of the following tests
- Biopsy of the lung or pleura
- Blood test
- Bronchoscopy
- Chest x-ray
- Computed tomography scan, including high-resolution computed tomography
- Culture of microorganisms from secretions such as sputum
- Ultrasound scanning can be useful to detect fluid such as pleural effusion
- Pulmonary function test
- Ventilation—perfusion scan
Respiratory disease is a common and significant cause of illness and death around the world. In the US, approximately 1 billion "common colds" occur each year. A study found that in 2010, there were approximately 6.8 million emergency department visits for respiratory disorders in the U.S. for patients under the age of 18. In 2012, respiratory conditions were the most frequent reasons for hospital stays among children.
In the UK, approximately 1 in 7 individuals are affected by some form of chronic lung disease, most commonly chronic obstructive pulmonary disease, which includes asthma, chronic bronchitis and emphysema.
Respiratory diseases (including lung cancer) are responsible for over 10% of hospitalizations and over 16% of deaths in Canada.
In 2011, respiratory disease with ventilator support accounted for 93.3% of ICU utilization in the United States.
In order to prevent bronchiectasis, children should be immunized against measles, pertussis, pneumonia, and other acute respiratory infections of childhood. While smoking has not been found to be a direct cause of bronchiectasis, it is certainly an irritant that all patients should avoid in order to prevent the development of infections (such as bronchitis) and further complications.
Treatments to slow down the progression of this chronic disease include keeping bronchial airways clear and secretions weakened through various forms of pneumotherapy. Aggressively treating bronchial infections with antibiotics to prevent the destructive cycle of infection, damage to bronchial tubes, and more infection is also standard treatment. Regular vaccination against pneumonia, influenza and pertussis are generally advised. A healthy body mass index and regular doctor visits may have beneficial effects on the prevention of progressing bronchiectasis. The presence of hypoxemia, hypercapnia, dyspnea level and radiographic extent can greatly affect the mortality rate from this disease.
A chest x-ray is useful to confirm or rule out a pneumothorax, pulmonary edema, or pneumonia. Spiral computed tomography with intravenous radiocontrast is the imaging study of choice to evaluate for pulmonary embolism.
A number of labs may be helpful in determining the cause of shortness of breath. D-dimer while useful to rule out a pulmonary embolism in those who are at low risk is not of much value if it is positive as it may be positive in a number of conditions that lead to shortness of breath. A low level of brain natriuretic peptide is useful in ruling out congestive heart failure; however, a high level while supportive of the diagnosis could also be due to advanced age, renal failure, acute coronary syndrome, or a large pulmonary embolism.
A physician's overall impression is most effective in initially making the diagnosis. Single factors are much less useful.
Methods used in laboratory diagnosis include culturing of nasopharyngeal swabs on a nutrient medium (Bordet-Gengou medium), polymerase chain reaction (PCR), direct fluorescent antibody (DFA), and serological methods (e.g. complement fixation test). The bacteria can be recovered from the person only during the first three weeks of illness, rendering culturing and DFA useless after this period, although PCR may have some limited usefulness for an additional three weeks.
Serology may be used for adults and adolescents who have already been infected for several weeks to determine whether antibody against pertussis toxin or another virulence factor of "B. pertussis" is present at high levels in the blood of the person. By this stage, they have been contagious for some weeks and may have spread the infection to many people. Because of this, adults, who are not in great danger from pertussis, are increasingly being encouraged to be vaccinated.
A similar, milder disease is caused by "B. parapertussis".
The primary method of prevention for pertussis is vaccination. Evidence is insufficient to determine the effectiveness of antibiotics in those who have been exposed, but are without symptoms. Preventive antibiotics, however, are still frequently used in those who have been exposed and are at high risk of severe disease (such as infants).
The diagnosis of plastic bronchitis is confirmed by recovery of casts that have been coughed up or visualized during a bronchoscopy. There is no specific cytologic, pathologic or laboratory test that is diagnostic for casts due to lymphatic PB.