Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
Hereditary spastic paraplegias can be classified based on the symptoms; mode of inheritance; the patient’s age at onset; the affected genes; and biochemical pathways involved.
Initial diagnosis of HSPs relies upon family history, the presence or absence of additional signs and the exclusion of other nongenetic causes of spasticity, the latter being particular important in sporadic cases.
Cerebral and spinal MRI is an important procedure performed in order to rule out other frequent neurological conditions, such as multiple sclerosis, but also to detect associated abnormalities such as cerebellar or corpus callosum atrophy as well as white matter abnormalities. Differential diagnosis of HSP should also exclude spastic diplegia which presents with nearly identical day-to-day effects and even is treatable with similar medicines such as baclofen and orthopedic surgery; at times, these two conditions may look and feel so similar that the only "perceived" difference may be HSP's hereditary nature versus the explicitly non-hereditary nature of spastic diplegia (however, unlike spastic diplegia and other forms of spastic cerebral palsy, HSP cannot be reliably treated with selective dorsal rhizotomy).
Ultimate confirmation of HSP diagnosis can only be provided by carrying out genetic tests targeted towards known genetic mutations.
Doublecortin positive cells, similar to stem cells, are extremely adaptable and, when extracted from a brain, cultured and then re-injected in a lesioned area of the same brain, they can help repair and rebuild it. The treatment using them would take some time to be available for general public use, as it has to clear regulations and trials.
Spastic quadriplegia can be diagnosed as early as age one after a noticed delay in development, particularly a delay in rolling, crawling, sitting, or walking. However, depending on the severity, signs may not show up until the age of three. Muscle tone is sometimes used to make the diagnosis for spastic quadriplegia as affected children often appear to be either too stiff or too floppy.
Another important diagnostic factor is the persistence of primitive reflexes past the age at which they should have disappeared (6–12 months of age). These reflexes include the rooting reflex, the sucking reflex, and the Moro reflex, among others.
Magnetic resonance imaging (MRI) or a computed tomography scan (CT scan) may be used to locate the cause of the symptoms. Ultrasound may be used for the same function in premature babies.
Because cerebral palsy refers to a group of disorders, it is important to have a clear and systematic naming system. These disorders must be non-progressive, non-transient, and not due to injury to the spinal cord. Disorders within the group are classified based on two characteristics- the main physiological symptom, and the limbs that are affected. For a disorder to be diagnosed as spastic quadriplegia, an individual must show spastic symptoms (as opposed to athetotic, hypertonic, ataxic, or atonic symptoms) and it must be present in all four limbs (as opposed to hemiplegic, diplegic, or triplegic cases).
While a diagnosis may be able to be made shortly after birth based on family history and observation of the infant, it is often postponed until after the child is between 18–24 months old in order to monitor the possible regression or progression of symptoms.
Like ALS, diagnosing PLS is a diagnosis of exclusion, as there is no one test that can confirm a diagnosis of PLS. The Pringle Criteria, proposed by Pringle et al, provides a guideline of nine points that, if confirmed, can suggest a diagnosis of PLS. Due to the fact that a person with ALS may initially present with only upper motor neuron symptoms, indicative of PLS, one key aspect of the Pringle Criteria is requiring a minimum of three years between symptom onset and symptom diagnosis. When these criteria are met, a diagnosis of PLS is highly likely. Other aspects of Pringle Criteria include normal EMG findings, thereby ruling out lower motor neuron involvement that is indicative of ALS, and absence of family history for Hereditary Spastic Paraplegia (HSP) and ALS. Imaging studies to rule out structural or demyelinating lesions may be done as well. Hoffman's sign and Babinski reflex may be present and indicative of upper motor neuron damage.
In any manifestation of spastic CP, clonus of the affected limb(s) may intermittently result, as well as muscle spasms, each of which results from the pain and/or stress of the tightness experienced, indicating especially hard-working and/or exhausted musculature. The spasticity itself can and usually does also lead to very early onset of muscle-stress symptoms like arthritis and tendinitis, especially in ambulatory individuals in their mid-20s and early-30s. As compared to other types of CP, however, and especially as compared to hypotonic CP or more general paralytic mobility disabilities, spastic CP is typically more easily manageable by the person affected, and medical treatment can be pursued on a multitude of orthopaedic and neurological fronts throughout life.
Physical therapy and occupational therapy regimens of assisted stretching, strengthening, functional tasks, and/or targeted physical activity and exercise are usually the chief ways to keep spastic CP well-managed, although if the spasticity is too much for the person to handle, other remedies may be considered, such as various antispasmodic medications, botox, baclofen, or even a neurosurgery known as a selective dorsal rhizotomy (which eliminates the spasticity by eliminating the nerves causing it).
In the industrialized world, the incidence of overall cerebral palsy, which includes but is not limited to spastic diplegia, is about 2 per 1000 live births. Thus far, there is no known study recording the incidence of CP in the overall nonindustrialized world. Therefore, it is safe to assume that not all spastic CP individuals are known to science and medicine, especially in areas of the world where healthcare systems are less advanced. Many such individuals may simply live out their lives in their local communities without any medical or orthopedic oversight at all, or with extremely minimal such treatment, so that they are never able to be incorporated into any empirical data that orthopedic surgeons or neurosurgeons might seek to collect. It is shocking to note that—as with people with physical disability overall—some may even find themselves in situations of institutionalization, and thus barely see the outside world at all.
From what "is" known, the incidence of spastic diplegia is higher in males than in females; the Surveillance of Cerebral Palsy in Europe (SCPE), for example, reports a M:F ratio of 1.33:1. Variances in reported rates of incidence across different geographical areas in industrialized countries are thought to be caused primarily by discrepancies in the criteria used for inclusion and exclusion.
When such discrepancies are taken into account in comparing two or more registers of patients with cerebral palsy and also the extent to which children with mild cerebral palsy are included, the incidence rates still converge toward the average rate of 2:1000.
In the United States, approximately 10,000 infants and babies are born with CP each year, and 1200–1500 are diagnosed at preschool age when symptoms become more obvious. It is interesting to note that those with extremely mild spastic CP may not even be aware of their condition until much later in life: Internet chat forums have recorded men and women as old as 30 who were diagnosed only recently with their spastic CP.
Overall, advances in care of pregnant mothers and their babies has not resulted in a noticeable decrease in CP; in fact, because medical advances in areas related to the care of premature babies has resulted in a greater survival rate in recent years, it is actually "more" likely for infants with cerebral palsy to be born into the world now than it would have been in the past. Only the introduction of quality medical care to locations with less-than-adequate medical care has shown any decreases in the incidences of CP; the rest either have shown no change or have actually shown an increase. The incidence of CP increases with premature or very low-weight babies regardless of the quality of care.
As a matter of everyday maintenance, muscle stretching, range of motion exercises, yoga, contact improvisation, modern dance, resistance training, and other physical activity regimens are often utilized by those with spastic CP to help prevent contractures and reduce the severity of symptoms.
Major clinical treatments for spastic diplegia are:
- Baclofen (and its derivatives), a gamma amino butyric acid (GABA) substitute in oral (pill-based) or intrathecal form. Baclofen is essentially chemically identical to the GABA that the damaged, over-firing nerves cannot absorb, except that it has an extra chemical 'marker' on it that makes the damaged nerves 'think' it is a different compound, and thus those nerves will absorb it. Baclofen is noted for being the sole medication available for GABA-deficiency-based spasticity which acts on the actual cause of the spasticity rather than simply reducing symptomatology as muscle relaxants and painkillers do. The intrathecal solution is a liquid injected into the spinal fluid for trial, and if successful in reducing spasticity, thereafter administered via an intrathecal pump, which has variously been proven potentially very dangerous on one or another level with long-term use (see article), including sudden and potentially lethal baclofen overdose, whereas the oral route, which comes in 10- or 20-milligram tablets and the dosage of which can be gently titrated either upward or downward, as well as safely ceased entirely, has not.
- Antispasmodic muscle relaxant chemicals such as tizanidine and botulinum toxin (Botox), injected directly into the spastic muscles; Botox wears off every three months.
- Phenol and similar chemical 'nerve deadeners', injected selectively into the over-firing nerves in the legs on the muscle end to reduce spasticity in their corresponding muscles by preventing the spasticity signals from reaching the legs; Phenol wears off every six months.
- Orthopedic surgery to release the spastic muscles from their hypertonic state, a usually temporary result because the spasticity source is the nerves, not the muscles; spasticity can fully reassert itself as little as one year post-surgery.
- Selective dorsal rhizotomy, a neurosurgery directly targeting and eliminating ("cutting" or "lesioning") the over-firing nerve rootlets and leaving the properly firing ones intact, thereby permanently eliminating the spasticity but compelling the person to spend months re-strengthening muscles that will have been severely weakened by the loss of the spasticity, due to the fact of those muscles not really having had actual strength to begin with.
Individuals with paraplegia can range in their level of disability, requiring treatments to vary from case to case. From a rehabilitation standpoint, the most important factor is to gain as much functionality and independence back as possible. Physiotherapists spend many hours within a rehabilitation setting working on strength, range of motion/stretching and transfer skills. Wheelchair mobility is also an important skill to learn. Most paraplegics will be dependent on a wheelchair as a mode of transportation. Thus it is extremely important to teach them the basic skills to gain their independence. Activities of daily living (ADLs) can be quite challenging at first for those with a spinal cord injury (SCI). With the aid of physiotherapists and occupational therapists, individuals with an SCI can learn new skills and adapt previous ones to maximize independence, often living independently within the community.
In some cases, spastic cerebral palsy is caused by genetic factors.
The genetic factors for spastic cerebral palsy include:
Although it has its origins in a brain injury, spastic CP can largely be thought of as a collection of orthopaedic and neuromuscular issues because of how it manifests symptomatically over the course of the person's lifespan. It is therefore not the same as "brain damage" and it need not be thought of as such. Spastic quadriplegia in particular, especially if it is combined with verbal speech challenges and strabismus, may be misinterpreted by the general population as alluding to cognitive dimensions to the disability atop the physical ones, but this is false; the intelligence of a person with any type of spastic CP is unaffected by the condition "of the spasticity itself".
In spastic cerebral palsy in children with low birth weights, 25% of children had hemiplegia, 37.5% had quadriplegia, and 37.5% had diplegia.
Patients can often live with PLS for many years and very often outlive their neurological disease and succumb to some unrelated condition. There is currently no effective cure, and the progression of symptoms varies. Some people may retain the ability to walk without assistance, but others eventually require wheelchairs, canes, or other assistive devices.
Olfactory ensheathing cells (OEC) have been transplanted with success into the spinal cord of Polish man named Darek Fidyka, who was the victim of a knife attack that left him paraplegic in 2010. In 2014, Fidyka underwent pioneering spinal surgery that used nerve grafts, from his ankle, to 'bridge the gap' in his severed spinal cord and OEC's to stimulate the spinal cord cells. The surgery was performed in Poland in collaboration with Prof Geoff Raisman, chair of neural regeneration at University College London's Institute of Neurology, and his research team. The olfactory cells were taken from the patients olfactory bulbs in his brain and then grown in the lab, these cells were then injected above and below the impaired spinal tissue. Fidyka regained sensory and motor function in his lower limbs, notably on the side of the transplanted OEC's. Fidyka first noticed the success three months after the procedure, when his left thigh started gaining muscle mass. MRIs suggest that the gap in his spinal cord has been closed up. He is believed to be the first person in the world to recover sensory function from a complete severing of the spinal nerves.
Treatment is directed at the pathology causing the paralysis. If it is because of trauma such as a gunshot or knife wound, there may be other life-threatening conditions such as bleeding or major organ damage which should be dealt with on an emergent basis. If the syndrome is caused by a spinal fracture, this should be identified and treated appropriately. Although steroids may be used to decrease cord swelling and inflammation, the usual therapy for spinal cord injury is expectant.
Physical therapy is the predominant treatment of symptoms. Orthopedic shoes and foot surgery can be used to manage foot problems.
Magnetic resonance imaging (MRI) is the imaging of choice in spinal cord lesions.
Brown-Séquard syndrome is an incomplete spinal cord lesion characterized by findings on clinical examination which reflect hemisection of the spinal cord (cutting the spinal cord in half on one or the other side). It is diagnosed by finding motor (muscle) paralysis on the same (ipsilateral) side as the lesion and deficits in pain and temperature sensation on the opposite (contralateral) side. This is called ipsilateral hemiplegia and contralateral pain and temperature sensation deficits. The loss of sensation on the opposite side of the lesion is because the nerve fibers of the spinothalamic tract (which carry information about pain and temperature) crossover once they meet the spinal cord from the peripheries.
Diffuse, symmetric white matter abnormalities were demonstrated by magnetic resonance imaging (MRI) suggesting that Behr syndrome may represent a disorder of white matter associated with an unknown biochemical abnormality.
Diagnosis is suspected clinically and family history, neuroimaging and genetic study helps to confirm Behr Syndrome.
In 1993, Peter James Dyck divided HSAN I further into five subtypes HSAN IA-E based on the presence of additional features. These features were thought to result from the genetic diversity of HSAN I (i.e. the expression of different genes, different alleles of a single gene, or modifying genes) or environmental factors. Molecular genetic studies later confirmed the genetic diversity of the disease.
The diagnosis of HSAN I is based on the observation of symptoms described above and is supported by a family history suggesting autosomal dominant inheritance. The diagnosis is also supported by additional tests, such as nerve conduction studies in the lower limbs to confirm a sensory and motor neuropathy. In sporadic cases, acquired neuropathies, such as the diabetic foot syndrome and alcoholic neuropathy, can be excluded by the use of magnetic resonance imaging and by interdisciplinary discussion between neurologists, dermatologists, and orthopedics.
The diagnosis of the disease has been revolutionized by the identification of the causative genes. The diagnosis is now based on the detection of the mutations by direct sequencing of the genes. Nevertheless, the accurate phenotyping of patients remains crucial in the diagnosis. For pregnant patients, termination of pregnancy is not recommended.
HSAN I must be distinguished from hereditary motor and sensory neuropathy (HMSN) and other types of hereditary sensory and autonomic neuropathies (HSAN II-V). The prominent sensory abnormalities and foot ulcerations are the only signs to separate HSAN I from HMSN. HSAN II can be differentiated from HSAN I as it is inherited as an autosomal recessive trait, it has earlier disease onset, the sensory loss is diffused to the whole body, and it has less or no motor symptoms. HSAN III-V can be easily distinguished from HSAN I because of congenital disease onset. Moreover, these types exhibit typical features, such as the predominant autonomic disturbances in HSAN III or congenital loss of pain and anhidrosis in HSAN IV.
Once the diagnosis of polymicrogyria has been established in an individual, the following approach can be used for discussion of prognosis:
A pregnancy history should be sought, with particular regard to infections, trauma, multiple gestations, and other documented problems. Screening for the common congenital infections associated with polymicrogyria with standard TORCH testing may be appropriate. Other specific tests targeting individual neurometabolic disorders can be obtained if clinically suggested.
The following may help in determining a genetic etiology:
Family history
It is important to ask for the presence of neurologic problems in family members, including seizures, cognitive delay, motor impairment, pseudobulbar signs, and focal weakness because many affected family members, particularly those who are older, may not have had MRI performed, even if these problems came to medical attention. In addition, although most individuals with polymicrogyria do present with neurologic difficulties in infancy, childhood, or adulthood, those with mild forms may have no obvious deficit or only minor manifestations, such as a simple lisp or isolated learning disability. Therefore, if a familial polymicrogyria syndrome is suspected, it may be reasonable to perform MRI on relatives who are asymptomatic or have what appear to be minor findings. The presence of consanguinity in a child's parents may suggest an autosomal recessive familial polymicrogyria syndrome.
Physical examination
A general physical examination of the proband may identify associated craniofacial, musculoskeletal, or visceral malformations that could indicate a particular syndrome. Neurologic examination should assess cognitive and mental abilities, cranial nerve function, motor function, deep tendon reflexes, sensory function, coordination, and gait (if appropriate).
Genetic testing
A prenatal diagnostic is possible and very reliable when mother is carrier of the syndrome. First, it's necessary to determine the fetus' sex and then study X-chromosomes. In both cases, the probability to transfer the X-chromosome affected to the descendants is 50%. Male descendants who inherit the affected chromosome will express the symptoms of the syndrome, but females who do will be carriers.
Autosomal Recessive Spastic Ataxia of the Charlevoix-Saguenay (ARSACS) is a very rare neurodegenerative genetic disorder that primarily affects people from the Saguenay–Lac-Saint-Jean and Charlevoix regions of Quebec or descendants of native settlers in this region. This disorder has also been demonstrated in people from various other countries including India, Turkey, Japan, The Netherlands, Italy, Belgium, France and Spain. The prevalence has been estimated at about 1 in 1900 in Quebec, but it is very rare elsewhere.
Distal hereditary motor neuropathy type V (dHMN V) is a particular type of neuropathic disorder. In general, distal hereditary motor neuropathies affect the axons of distal motor neurons and are characterized by progressive weakness and atrophy of muscles of the extremities. It is common for them to be called "spinal forms of Charcot-Marie-Tooth disease (CMT)", because the diseases are closely related in symptoms and genetic cause. The diagnostic difference in these diseases is the presence of sensory loss in the extremities. There are seven classifications of dHMNs, each defined by patterns of inheritance, age of onset, severity, and muscle groups involved. Type V (sometimes notated as Type 5) is a disorder characterized by autosomal dominance, weakness of the upper limbs that is progressive and symmetrical, and atrophy of the small muscles of the hands.
A thorough history is essential and should cover family history, diet; drug/toxin exposure social history, including tobacco and alcohol use; and occupational background, with details on whether similar cases exist among coworkers. Treatment of any chronic disease such as pernicious anemia should always be elucidated.
In most cases of nutritional/toxic optic neuropathy, the diagnosis may be obtained via detailed medical history and eye examination. Additionally, supplementary neurological imaging studies, such as MRI or enhanced CT, may be performed if the cause remains unclear.
When the details of the examination and history indicate a familial history of similar ocular or systemic disease, whether or not there is evidence of toxic or nutritional causes for disease, certain genetic tests may be required. Because there are several congenital causes of mitochondrial dysfunction, the patients history, examination, and radiological studies must be examined in order to determine the specific genetic tests required. For example, 90% of cases of Leber’s Hereditary Optic Neuropathy (LHON) are associated with three common mtDNA point mutations (m.3460G>A/MT-ND1, m.11778G>A/MT-ND4, m.14484T>C/MT-ND6) while a wider range of mtDNA mutations (MT-ND1, MT-ND5, MT-ND6; http://www.mitomap.org/) have been associated with overlapping phenotypes of LHON, MELAS, and Leigh syndrome.
There is no cure for PMD, nor is there a standard course of treatment. Treatment, which is symptomatic and supportive, may include medication for seizures and spasticity. Regular evaluations by physical medicine and rehabilitation, orthopedic, developmental and neurologic specialists should be made to ensure optimal therapy and educational resources. The prognosis for those with Pelizaeus–Merzbacher disease is highly variable, with children with the most severe form (so-called connatal) usually not surviving to adolescence, but survival into the sixth or even seventh decades is possible, especially with attentive care. Genetic counseling should be provided to the family of a child with PMD.
In December 2008, StemCells Inc., a biotech company in Palo Alto, received clearance from the U.S. Food and Drug Administration (FDA) to conduct Phase I clinical trials in PMD to assess the safety of transplanting human neural stem cells as a potential treatment for PMD. The trial was initiated in November 2009 at the University of California, San Francisco (UCSF) Children's Hospital.