Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The diagnosis of pulmonary valve stenosis can be achieved via echocardiogram, as well as a variety of other means among them are: ultrasound, in which images of the heart chambers in utero where the tricuspid valve has thickening (or due to Fallot's tetralogy, Noonan's syndrome, and other congenital defects) and in infancy auscultation of the heart can reveal identification of a murmur.
Some other conditions to contemplate (in diagnosis of pulmonic valvular stenosis) are the following:
- Infundibular stenosis
- Supravalvular pulmonary stenosis
- Dysplastic pulmonic valve stenosis
A chest X-ray can also assist in the diagnosis and provide clues as to the severity of the disease, showing the degree of calcification of the valve, and in a chronic condition, an enlarged left ventricle and atrium.
Cardiac chamber catheterization provides a definitive diagnosis, indicating severe stenosis in valve area of <1.0 cm (normally about 3 cm). It can directly measure the pressure on both sides of the aortic valve. The pressure gradient may be used as a decision point for treatment. It is useful in symptomatic people before surgery. The standard for diagnosis of aortic stenosis is noninvasive testing with echocardiography. Cardiac catheterization is reserved for cases in which there is discrepancy between the clinical picture and non-invasive testing, due to risks inherent to crossing the aortic valve such as stroke.
Chest X-ray may also assist in diagnosis, showing left atrial enlargement.
Electrocardiography may show "P mitrale", that is, broad, notched P waves in several or many leads with a prominent late negative component to the P wave in lead V, and may also be seen in mitral regurgitation, and, potentially, any cause of overload of the left atrium. Thus, "P-sinistrocardiale" may be a more appropriate term.
Another method of measuring the severity of mitral stenosis is the simultaneous left and right heart chamber catheterization. The right heart catheterization (commonly known as Swan-Ganz catheterization) gives the physician the mean pulmonary capillary wedge pressure, which is a reflection of the left atrial pressure. The left heart catheterization, on the other hand, gives the pressure in the left ventricle. By simultaneously taking these pressures, it is possible to determine the gradient between the left atrium and left ventricle during ventricular diastole, which is a marker for the severity of mitral stenosis. This method of evaluating mitral stenosis tends to overestimate the degree of mitral stenosis, however, because of the time lag in the pressure tracings seen on the right-heart catheterization and the slow Y descent seen on the wedge tracings. If a trans-septal puncture is made during right heart catheterization, however, the pressure gradient can accurately quantify the severity of mitral stenosis.
In terms of treatment for pulmonary valve stenosis, valve replacement or surgical repair (depending upon whether the stenosis is in the valve or vessel) may be indicated. If the valve stenosis is of congenital origin, balloon valvuloplasty is another option, depending on the case.
Valves made from animal or human tissue (are used for valve replacement), in adults metal valves can be used.
A chest x-ray will be given to determine the size of the heart and the blood vessels supplying blood to the lungs.
A color flow and doppler imaging is used to help confirm the presence as well as evaluate the severity of ASD and MS.
A less invasive method for detecting a PFO or other ASDs than transesophagal ultrasound is transcranial Doppler with bubble contrast. This method reveals the cerebral impact of the ASD or PFO.
Once someone is found to have an atrial septal defect, a determination of whether it should be corrected is typically made. If the atrial septal defect is causing the right ventricle to enlarge a secundum atrial septal defect should generally be closed. If the ASD is not causing problems the defect may simply checked every two or three years. Methods of closure of an ASD include surgical closure and percutaneous closure.
Drug therapy can be used to minimize risk of thromboembolism and stroke in PFO. Anticoagulants, such as warfarin, are commonly used to reduce blood clotting, whereas antiplatelet agents, such as aspirin, are used to reduce platelet aggregation and thrombosis.
The following table includes the main types of valvular stenosis and regurgitation. Major types of valvular heart disease not included in the table include mitral valve prolapse, rheumatic heart disease and endocarditis.
A VSD can be detected by cardiac auscultation. Classically, a VSD causes a pathognomonic holo- or pansystolic murmur. Auscultation is generally considered sufficient for detecting a significant VSD. The murmur depends on the abnormal flow of blood from the left ventricle, through the VSD, to the right ventricle. If there is not much difference in pressure between the left and right ventricles, then the flow of blood through the VSD will not be very great and the VSD may be silent. This situation occurs a) in the fetus (when the right and left ventricular pressures are essentially equal), b) for a short time after birth (before the right ventricular pressure has decreased), and c) as a late complication of unrepaired VSD. Confirmation of cardiac auscultation can be obtained by non-invasive cardiac ultrasound (echocardiography). To more accurately measure ventricular pressures, cardiac catheterization, can be performed.
In treating pulmonary insufficiency, it should be determined if pulmonary hypertension is causing the problem to therefore begin the most appropriate therapy as soon as possible (primary pulmonary hypertension or secondary pulmonary hypertension due to thromboembolism). Furthermore, pulmonary insufficiency is generally treated by addressing the underlying condition, in certain cases, the pulmonary valve may be surgically replaced.
The treatment of choice is percutaneous balloon valvuloplasty and is done when a resting peak gradient is seen to be >60mm Hg or a mean >40mm Hg is observed.
Although there are several classifications for VSD, the most accepted and unified classification is that of Congenital Heart Surgery Nomenclature and Database Project.
The classification is based on the location of the VSD on the right ventricular surface of the inter ventricular septum and is as follows:
Fetal aortic valve stenosis can be diagnosed by echocardiography before birth. The diagnostic features include a poorly contracting left ventricle, aortic valve thickening/restriction, a varying degree of left ventricular hypertrophy and abnormal Doppler flow characteristics in the left heart. There may be little or no detectable flow into or out of the left side of the heart.
There are two screening periods, one during the first trimester and the other during the second trimester. Fetal aortic stenosis is typically detected between 18 and 24 weeks gestation. This early detection is important because it allows for parents to be counseled in a timely and rational manner, allowing for discussion of prognosis and possible outcomes. Another reason for this crucial early detection is because it allows for postnatal management planning.
Tricuspid valve stenosis itself usually doesn't require treatment. If stenosis is mild, monitoring the condition closely suffices. However, severe stenosis, or damage to other valves in the heart, may require surgical repair or replacement.
The treatment is usually by surgery (tricuspid valve replacement) or percutaneous balloon valvuloplasty. The resultant tricuspid regurgitation from percutaneous treatment is better tolerated than the insufficiency occurring during mitral valvuloplasty.
In the diagnosis of pulmonary insufficiency both echocardiograms and EKG is used to ascertain if the individual has this condition, as well as, the use of a chest x-ray to expose enlargement of the right atrium or ventricle.
For proper diagnosis of situs ambiguous, cardiac and non-cardiac features must be evaluated. Diagnostic criteria for atrial isomerism includes observation of symmetry of thoracic visceral organs upon echocardiogram, arrhythmia upon electrocardiogram, and chest x-ray for confirmation of the heart's location across the left-right axis. In addition, a series of gastrointestinal tests can be conducted for observation of intestinal malrotation, as well as a scan of the liver and spleen for biliary function.
The Norwood procedure is a procedure to correct fetal aortic stenosis that occurs after birth. This typically consists of three surgeries creating and removing shunts. The atrial septum is removed, the aortic arch is reconstructed to remove any hypoplasia, and then the main pulmonary artery is connected into this reconstructed arch, resulting in the right ventricle ejecting directly into systemic circulation. In the end, the right ventricle is pumping blood to systemic circulation and to the lungs. However, this procedure carries a very high risk of failure and the patient will likely require a heart transplant.
Another treatment option is to correct the stenosis in utero. In this procedure, fetal positioning is crucial. It is important that the left chest is located anteriorly, and that there are no limbs between the uterine wall and the apex of the left ventricle. The LV apex needs to be within 9 cm of the abdominal wall and the left ventricle outflow track has to be parallel to the intended cannula course in order for the wire to be blindly directed at the aortic valve. A 11.5 cm long, 19-gauge cannula and stylet needle passes through the mother’s abdomen, uterine wall, and fetal chest wall into the left ventricle of the fetus. Then a 0.014 inch guide wire is passed across the stenosis aortic valve, where a balloon is inflated to stretch the aortic annulus.
An alternative to the Norwood procedure is known as the hybrid procedure, was developed in 2008. In the hybrid procedure, bilateral pulmonary artery bands are positioned to limit pulmonary flow while, at the same time, placing a stent in the ductus arteriosus to hold it open. This maintains the connection between the aorta and the systemic circulation. A balloon atrial septostomy is also done. This ensures that there is enough of a connection between the two atria of the heart to provide open blood flow and mixing of oxygen rich and poor blood This procedure spares the baby from undergoing open heart surgery until they are older. They typically come back at 4–6 months of age when they are stronger for the open heart surgery.
The diagnosis of pulmonary heart disease is not easy as both lung and heart disease can produce similar symptoms. Therefore, the differential diagnosis should assess:
Among the investigations available to determine cor pulmonale are:
- Chest x-ray – right ventricular hypertrophy, right atrial dilatation, prominent pulmonary artery
- ECG – right ventricular hypertrophy, dysrhythmia, P pulmonale (characteristic peaked P wave)
- Thrombophilia screen- to detect chronic venous thromboembolism (proteins C and S, antithrombin III, homocysteine levels)
Although its cause is poorly understood, situs ambiguous has been linked to family history of malformations and maternal cocaine use, suggesting both genetic and environmental factors play a role. Several genes in the TGF-beta pathway, which controls left-right patterning of viseral organs across the body axis, have been indicated in sporadic and familial cases of atrial isomerism.
There does not appear to be a screening method for prevention of heterotaxy syndrome. However, genetic testing in family members that display atrial isomerism or other cardiac malformations may help to discern risk for additional family members, especially in X-linked causes of heterotaxy syndrome.
The evaluation of individuals with valvular heart disease who are or wish to become pregnant is a difficult issue. Issues that have to be addressed include the risks during pregnancy to the mother and the developing fetus by the presence of maternal valvular heart disease as an intercurrent disease in pregnancy.
Normal physiological changes during pregnancy require, on average, a 50% increase in circulating blood volume that is accompanied by an increase in cardiac output that usually peaks between the midportion of the second and third trimesters. The increased cardiac output is due to an increase in the stroke volume, and a small increase in heart rate, averaging 10 to 20 beats per minute. Additionally uterine circulation and endogenous hormones cause systemic vascular resistance to decrease and a disproportionately lowering of diastolic blood pressure causes a wide pulse pressure. Inferior vena caval obstruction from a gravid uterus in the supine position can result in an abrupt decrease in cardiac preload, which leads to hypotension with weakness and lightheadedness. During labor and delivery cardiac output increases more in part due to the associated anxiety and pain, as well as due to uterine contractions which will cause an increases in systolic and diastolic blood pressure.
Valvular heart lesions associated with high maternal and fetal risk during pregnancy include:
1. Severe aortic stenosis with or without symptoms
2. Aortic regurgitation with NYHA functional class III-IV symptoms
3. Mitral stenosis with NYHA functional class II-IV symptoms
4. Mitral regurgitation with NYHA functional class III-IV symptoms
5. Aortic and/or mitral valve disease resulting in severe pulmonary hypertension (pulmonary pressure greater than 75% of systemic pressures)
6. Aortic and/or mitral valve disease with severe LV dysfunction (EF less than 0.40)
7. Mechanical prosthetic valve requiring anticoagulation
8. Marfan syndrome with or without aortic regurgitation
In individuals who require an artificial heart valve, consideration must be made for deterioration of the valve over time (for bioprosthetic valves) versus the risks of blood clotting in pregnancy with mechanical valves with the resultant need of drugs in pregnancy in the form of anticoagulation.
Vessel restenosis is typically detected by angiography, but can also be detected by duplex ultrasound and other imaging techniques.
A mild diastolic murmur can be heard during auscultation caused by the blood flow through the stenotic valve. It is best heard over the left sternal border with rumbling character and tricuspid opening snap with wide-splitting S1. It may increase in intensity with inspiration (Carvallo's sign). The diagnosis will typically be confirmed by an echocardiograph, which will also allow the physician to assess its severity.