Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
For people considered likely to have PAH based on the above tests, the specific associated condition is then determined based on the physical examination, medical/family history and further specific diagnostic tests (for example, serological tests to detect underlying connective tissue disease, HIV infection or hepatitis, ultrasonography to confirm the presence of portal hypertension, echocardiography/cardiac magnetic resonance imaging for congenital heart disease, laboratory tests for schistosomiasis, and high resolution CT for PVOD and pulmonary capillary hemangiomatosis). Routine lung biopsy is discouraged in patients with PAH, because of the risk to the patient and because the findings are unlikely to alter the diagnosis and treatment.
Although pulmonary arterial pressure (PAP) can be estimated on the basis of echocardiography, pressure measurements with a Swan-Ganz catheter inserted through the right side of the heart provide the most definite assessment.[42] Pulmonary hypertension is defined as a mean PAP of at least 25 mm Hg (3300 Pa) at rest, and PAH is defined as precapillary pulmonary hypertension (i.e. mean PAP ≥ 25 mm Hg with pulmonary arterial occlusion pressure [PAOP] ≤ 15 mm Hg and pulmonary vascular resistance [PVR] > 3 Wood Units). PAOP and PVR cannot be measured directly with echocardiography. Therefore, diagnosis of PAH requires right-sided cardiac catheterization. A Swan-Ganz catheter can also measure the cardiac output; this can be used to calculate the cardiac index, which is far more important in measuring disease severity than the pulmonary arterial pressure.
"Mean" PAP (mPAP) should not be confused with systolic PAP (sPAP), which is often reported on echocardiogram reports. A systolic pressure of 40 mm Hg typically implies a mean pressure of more than 25 mm Hg. Roughly, mPAP = 0.61•sPAP + 2.
Early diagnosis still remains a challenge in CTEPH, with a median time of 14 months between symptom onset and diagnosis in expert centres. A suspicion of PH is often raised by echocardiography, but an invasive right heart catheterisation is required to confirm it. Once PH is diagnosed, the presence of thromboembolic disease requires imaging. The recommended diagnostic algorithm stresses the importance of initial investigation using an echocardiogram and V/Q scan and confirmation with right heart catheter and pulmonary angiography (PA).
Both V/Q scanning and modern multidetector CT angiography (CTPA) may be accurate methods for the detection of CTEPH, with excellent diagnostic efficacy in expert hands (sensitivity, specificity, and accuracy of 100%, 93.7%, and 96.5% for V/Q and 96.1%, 95.2%, and 95.6% for CTPA). However, CTPA alone cannot exclude the disease, but may help identify pulmonary artery distension resulting in left main coronary artery compression, pulmonary parenchymal lesions (e.g. as complications from previous pulmonary infarctions), and bleeding from bronchial collateral arteries. Today, the gold standard imaging remains invasive pulmonary angiography (PAG) using native angiograms or a digital subtraction technique.
The diagnosis is made by transthoracic or transesophageal echocardiography, angiography, and more recently by CT angiography or MR Angiography.
Surgical correction should be considered in the presence of significant left to right shunting (Qp:Qs ≥ 2:1) and pulmonary hypertension. This involves creation of an inter-atrial baffle to redirect the pulmonary venous return into the left atrium. Alternatively, the anomalous vein can be re-implanted directly into the left atrium.
In regards to the diagnosis of pulmonary atresia the body requires oxygenated blood for survival. pulmonary atresia is not threatening to a developing fetus however, because the mother's placenta provides the needed oxygen since the baby's lungs are not yet functional. Once the baby is born its lungs must now provide the oxygen needed for survival, but with pulmonary atresia there is no opening on the pulmonary valve for blood to get to the lungs and become oxygenated. Due to this, the newborn baby is blue in color and pulmonary atresia can usually be diagnosed within hours or minutes after birth.
The diagnosis of pulmonary atresia can be done via the following exams/methods: an echocardiogram, chest x-ray, EKG and an exam to measure the amount of in the body.
Historically the prognosis for patients with untreated CTEPH was poor, with a 5-year survival of 40 mmHg at presentation. More contemporary data from the European CTEPH registry have demonstrated a 70% 3-year survival in patients with CTEPH who do not undergo the surgical procedure of pulmonary endarterectomy (PEA). Recent data from an international CTEPH registry demonstrate that mortality in CTEPH is associated with New York Heart Association (NYHA) functional class IV, increased right atrial pressure, and a history of cancer. Furthermore, comorbidities such as coronary disease, left heart failure, and chronic obstructive pulmonary disease (COPD) are risk factors for mortality.
The diagnosis of pulmonary heart disease is not easy as both lung and heart disease can produce similar symptoms. Therefore, the differential diagnosis should assess:
Among the investigations available to determine cor pulmonale are:
- Chest x-ray – right ventricular hypertrophy, right atrial dilatation, prominent pulmonary artery
- ECG – right ventricular hypertrophy, dysrhythmia, P pulmonale (characteristic peaked P wave)
- Thrombophilia screen- to detect chronic venous thromboembolism (proteins C and S, antithrombin III, homocysteine levels)
In treating pulmonary insufficiency, it should be determined if pulmonary hypertension is causing the problem to therefore begin the most appropriate therapy as soon as possible (primary pulmonary hypertension or secondary pulmonary hypertension due to thromboembolism). Furthermore, pulmonary insufficiency is generally treated by addressing the underlying condition, in certain cases, the pulmonary valve may be surgically replaced.
The diagnosis of portopulmonary hypertension is based on hemodynamic criteria:
1. . Portal hypertension and/or liver disease (clinical diagnosis—ascites/varices/splenomegaly)
2. . Mean pulmonary artery pressure—MPAP > 25 mmHg at rest
3. . Pulmonary vascular resistance—PVR > 240 dynes s cm−5
4. . Pulmonary artery occlusion pressure— PAOP 12 mmHg where TPG = MPAP − PAOP.
The diagnosis is usually first suggested by a transthoracic echocardiogram, part of the standard pre-transplantation work-up. Echocardiogram estimated pulmonary artery systolic pressures of 40 to 50 mm Hg are used as a screening cutoff for PPH diagnosis, with a sensitivity of 100% and a specificity as high as 96%. The negative predictive value of this method is 100% but the positive predictive value is 60%. Thereafter, these patients are referred for pulmonary artery catheterization.
The limitations of echocardiography are related to the derivative nature of non-invasive PAP estimation. The measurement of PAP by echocardiogram is made using a simplified Bernoulli equation. High cardiac index and pulmonary capillary wedge pressures, however, may lead to false positives by this standard. By one institution’s evaluation, the correlation between estimated systolic PAP and directly measured PAP was poor, 0.49. For these reasons, right heart catheterization is needed to confirm the diagnosis.
The prognosis for pulmonary atresia varies for every child, if the condition is left uncorrected it may be fatal, but the prognosis has greatly improved over the years for those with pulmonary atresia. Some factors that affect how well the child does include how well the heart is beating, and the condition of the blood vessels that supply the heart. Most cases of pulmonary atresia can be helped with surgery, if the patient's right ventricle is exceptionally small, many surgeries will be needed in order to help stimulate normal circulation of blood to the heart.If uncorrected, babies with this type of congenital heart disease may only survive for the first few days of life. Many children with pulmonary atresia will go on to lead normal lives, though complications such as endocarditis, stroke and seizures are possible.
On chest X-ray, transposition of the great vessels typically shows a cardio-mediastinal silhouette appearing as an ""egg on a string"", wherein in which the enlarged heart represents an egg on its side and the narrowed, atrophic thymus of the superior mediastinum represents the string.
d-TGA can sometimes be diagnosed in utero with an ultrasound after 18 weeks gestation. However, if it is not diagnosed in utero, cyanosis of the newborn (blue baby) should immediately indicate that there is a problem with the cardiovascular system. Normally, the lungs are examined first, then the heart is examined if there are no apparent problems with the lungs. These examinations are typically performed using ultrasound, known as an echocardiogram when performed on the heart. Chest x-rays and electrocardiograms (EKG) may also be used in reaching or confirming a diagnosis; however, an x-ray may appear normal immediately following birth. If d-TGA is accompanied by both a VSD and pulmonary stenosis, a systolic murmur will be present.
On the rare occasion (when there is a large VSD with no significant left ventricular outflow tract obstruction), initial symptoms may go unnoticed, resulting in the infant being discharged without treatment in the event of a hospital or birthing center birth, or a delay in bringing the infant for diagnosis in the event of a home birth. On these occasions, a layperson is likely not to recognize symptoms until the infant is experiencing moderate to serious congestive heart failure (CHF) as a result of the heart working harder in a attempt to increase oxygen flow to the body; this overworking of the heart muscle eventually leads to hypertrophy and may result in cardiac arrest if left untreated.
For newborns with transposition, prostaglandins can be given to keep the ductus arteriosus open which allows mixing of the otherwise isolated pulmonary and systemic circuits. Thus oxygenated blood that recirculates back to the lungs can mix with blood that circulates throughout the body. The arterial switch operation is the definitive treatment for dextro- transposition. Rarely the arterial switch is not feasible due to particular coronary artery anatomy and an atrial switch operation is preferred.
The treatment of choice is percutaneous balloon valvuloplasty and is done when a resting peak gradient is seen to be >60mm Hg or a mean >40mm Hg is observed.
The diagnosis of pulmonary valve stenosis can be achieved via echocardiogram, as well as a variety of other means among them are: ultrasound, in which images of the heart chambers in utero where the tricuspid valve has thickening (or due to Fallot's tetralogy, Noonan's syndrome, and other congenital defects) and in infancy auscultation of the heart can reveal identification of a murmur.
Some other conditions to contemplate (in diagnosis of pulmonic valvular stenosis) are the following:
- Infundibular stenosis
- Supravalvular pulmonary stenosis
- Dysplastic pulmonic valve stenosis
l-TGA can sometimes be diagnosed in utero with an ultrasound after 18 weeks gestation. However, many cases of simple l-TGA are "accidentally" diagnosed in adulthood, during diagnosis or treatment of other conditions.
Medical diagnosis of pulmonary hypoplasia in utero may use imaging, usually ultrasound or MRI. The extent of hypoplasia is a very important prognostic factor. One study of 147 fetuses (49 normal, 98 with abnormalities) found that a simple measurement, the ratio of chest length to trunk (torso) length, was a useful predictor of postnatal respiratory distress. In a study of 23 fetuses, subtle differences seen on MRIs of the lungs were informative. In a study of 29 fetuses with suspected pulmonary hypoplasia, the group that responded to maternal oxygenation had a more favorable outcome.
Pulmonary hypoplasia is diagnosed also clinically.
In addition to evaluating the symptoms above, the health care provider may find decreased or no blood pressure in the arm or leg.
Tests to determine any underlying cause for thrombosis or embolism and to confirm presence of the obstruction may include:
- Doppler ultrasound, especially duplex ultrasonography. It may also involve transcranial doppler exam of arteries to the brain
- Echocardiography, sometimes involving more specialized techniques such as Transesophageal echocardiography (TEE) or myocardial contrast echocardiography (MCE) to diagnose myocardial infarction
- Arteriography of the affected extremity or organ Digital subtraction angiography is useful in individuals where administration of radiopaque contrast material must be kept to a minimum.
- Magnetic resonance imaging (MRI)
- Blood tests for measuring elevated enzymes in the blood, including cardiac-specific troponin T and/or troponin I, myoglobins, and creatine kinase isoenzymes. These indicate embolisation to the heart that has caused myocardial infarction. Myoglobins and creatine kinase are also elevated in the blood in embolisation in other locations.
- Blood cultures may be done to identify the organism responsible for any causative infection
- Electrocardiography (ECG) for detecting myocardial infarction
- Angioscopy using a flexible fiberoptic catheter inserted directly into an artery.
In terms of treatment for pulmonary valve stenosis, valve replacement or surgical repair (depending upon whether the stenosis is in the valve or vessel) may be indicated. If the valve stenosis is of congenital origin, balloon valvuloplasty is another option, depending on the case.
Valves made from animal or human tissue (are used for valve replacement), in adults metal valves can be used.
The diagnosis of renal artery stenosis can use many techniques to determine if the condition is present, a clinical prediction rule is available to guide diagnosis.
Among the diagnostic techniques are:
- Doppler ultrasound study of the kidneys
- refractory hypertension
- auscultation (with stethoscope) - bruit ("rushing" sound)
- captopril challenge test
- captopril test dose effect on the differential renal function as measured by MAG3 scan.
- renal artery arteriogram.
With simple d-TGA, if the foramen ovale and ductus arteriosus are allowed to close naturally, the newborn will likely not survive long enough to receive corrective surgery. With complex d-TGA, the infant will fail to thrive and is unlikely to survive longer than a year if corrective surgery is not performed. In most cases, the patient's condition will deteriorate to the point of inoperability if the defect is not corrected in the first year.
While the foramen ovale and ductus arteriosus are open after birth, some mixing of red and blue blood occurs allowing a small amount of oxygen to be delivered to the body; if ASD, VSD, PFO, and/or PDA are present, this will allow a higher amount of the red and blue blood to be mixed, therefore delivering more oxygen to the body, but can complicate and lengthen the corrective surgery and/or be symptomatic.
Modern repair procedures within the ideal timeframe and without additional complications have a very high success rate.
Congenital heart defects are now diagnosed with echocardiography, which is quick, involves no radiation, is very specific, and can be done prenatally.
Before more sophisticated techniques became available, chest x-ray was the definitive method of diagnosis. The abnormal "coeur-en-sabot" (boot-like) appearance of a heart with tetralogy of Fallot is classically visible via chest x-ray, although most infants with tetralogy may not show this finding. Absence of interstitial lung markings secondary to pulmonary oligaemia are another classic finding in tetralogy, as is the pulmonary bay sign.
In the diagnosis of pulmonary insufficiency both echocardiograms and EKG is used to ascertain if the individual has this condition, as well as, the use of a chest x-ray to expose enlargement of the right atrium or ventricle.
PDA is usually diagnosed using noninvasive techniques. Echocardiography (in which sound waves are used to capture the motion of the heart) and associated Doppler studies are the primary methods of detecting PDA. Electrocardiography (ECG), in which electrodes are used to record the electrical activity of the heart, is not particularly helpful as no specific rhythms or ECG patterns can be used to detect PDA.
A chest X-ray may be taken, which reveals overall heart size (as a reflection of the combined mass of the cardiac chambers) and the appearance of blood flow to the lungs. A small PDA most often accompanies a normal-sized heart and normal blood flow to the lungs. A large PDA generally accompanies an enlarged cardiac silhouette and increased blood flow to the lungs.