Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The diagnosis of Albright's hereditary osteodystrophy is based on the following exams below:
- CBC
- Urine test
- MRI
Treatment consists of maintaining normal levels of calcium, phosphorus, and Vitamin D. Phosphate binders, supplementary Calcium and Vitamin D will be used as required.
Treatments focuses on symptoms, with genetic counseling recommended.
OFC may be diagnosed using a variety of techniques. Muscles in patients afflicted with OFC can either appear unaffected or "bulked up." If muscular symptoms appear upon the onset of hyperparathyroidism, they are generally sluggish contraction and relaxation of the muscles. Deviation of the trachea (a condition in which the trachea shifts from its position at the midline of the neck), in conjunction with other known symptoms of OFC can point to a diagnosis of parathyroid carcinoma.
Blood tests on patients with OFC generally show high levels of calcium (normal levels are considered to range between 8.5 and 10.2 mg/dL, parathyroid hormone (levels generally above 250 pg/mL, as opposed to the "normal" upper-range value of 65 pg/mL), and alkaline phosphatase(normal range is 20 to 140 IU/L).
X-rays may also be used to diagnose the disease. Usually, these X-rays will show extremely thin bones, which are often bowed or fractured. However, such symptoms are also associated with other bone diseases, such as osteopenia or osteoporosis. Generally, the first bones to show symptoms via X-ray are the fingers. Furthermore, brown tumors, especially when manifested on facial bones, can be misdiagnosed as cancerous. Radiographs distinctly show bone resorption and X-rays of the skull may depict an image often described as "ground glass" or "salt and pepper". Dental X-rays may also be abnormal.
Cysts may be lined by osteoclasts and sometimes blood pigments, which lend to the notion of "brown tumors." Such cysts can be identified with nuclear imaging combined with specific tracers, such as sestamibi. Identification of muscular degeneration or lack of reflex can occur through clinical testing of deep tendon reflexes, or via photomotogram (an achilles tendon reflex test).
Fine needle aspiration (FNA) can be used to biopsy bone lesions, once found on an X-ray or other scan. Such tests can be vital in diagnosis and can also prevent unnecessary treatment and invasive surgery. Conversely, FNA biopsy of tumors of the parathyroid gland is not recommended for diagnosing parathyroid carcinoma and may in fact be harmful, as the needle can puncture the tumor, leading to dissemination and the possible spread of cancerous cells.
The brown tumors commonly associated with OFC display many of the same characteristics of osteoclasts. These cells are characteristically benign, feature a dense, granular cytoplasm, and a nucleus that tends to be ovular in shape, enclosing comparatively fine chromatin. Nucleoli also tend to be smaller than average.
The gold standard of diagnosis is the parathyroid immunoassay. Once an elevated Parathyroid hormone has been confirmed, goal of diagnosis is to determine whether the hyperparathyroidism is primary or secondary in origin by obtaining a serum calcium level:
Tertiary hyperparathyroidism has a high PTH and a high serum calcium. It is differentiated from primary hyperparathyroidism by a history of chronic kidney failure and secondary hyperparathyroidism.
A technetium sestamibi scan is a procedure in nuclear medicine that identifies hyperparathyroidism (or parathyroid adenoma). It is used by surgeons to locate ectopic parathyroid adenomas, most commonly found in the anterior mediastinum.
Recovery from renal osteodystrophy has been observed following kidney transplantation. Renal osteodystrophy is a chronic condition with a conventional hemodialysis schedule. Nevertheless, it is important to consider that the broader concept of CKD-MBD, which includes renal osteodystrophy, is not only associated with bone disease and increased risk of fractures but also with cardiovascular calcification, poor quality of life and increased morbidity and mortality in CKD patients (the so-called bone-vascular axis). Actually, bone may now be considered a new endocrine organ at the heart of CKD-MBD.
To confirm the diagnosis, renal osteodystrophy must be characterized by determining bone turnover, mineralization, and volume (TMV system) (bone biopsy). All forms of renal osteodystrophy should also be distinguished from other bone diseases which may equally result in decreased bone density (related or unrelated to CKD):
- osteoporosis
- osteopenia
- osteomalacia
- brown tumor should be considered as the top-line diagnosis if a mass-forming lesion is present.
Diagnosis is by measurement of calcium, serum albumin (for correction) and PTH in blood.
If necessary, measuring cAMP (cyclic AMP) in the urine after an intravenous dose of PTH can help in the distinction between hypoparathyroidism and other causes.
Differential diagnoses are:
- Pseudohypoparathyroidism (normal PTH levels but tissue insensitivity to the hormone, associated with mental retardation and skeletal deformities) and pseudopseudohypoparathyroidism.
- Vitamin D deficiency or hereditary insensitivity to this vitamin (X-linked dominant).
- Malabsorption
- Kidney disease
- Medication: steroids, diuretics, some antiepileptics.
Other tests include ECG for abnormal heart rhythms, and measurement of blood magnesium levels.
Almost all who undergo parathyroidectomy experience increased bone density and repair of the skeleton within weeks. Additionally, patients with OFC who have undergone parathyroidectomy begin to show regression of brown tumors within six months. Following parathyroidectomy, hypocalcaemia is common. This results from a combination of suppressed parathyroid glands due to prolonged hypercalcaemia, as well as the need for calcium and phosphate in the mineralization of new bone.
Thirty percent of patients with OFC caused by parathyroid carcinoma who undergo surgery see a local recurrence of symptoms. The post-surgical survival rate hovers around seven years, while patients who do not undergo surgery have a survival rate of around five years.
The U.S. Preventive Services Task Force (USPSTF) recommend that all women 65 years of age or older be screened by bone densitometry. Additionally they recommend screening women with increased risk factors that puts them at risk equivalent to a 65‑year‑old. There is insufficient evidence to make recommendations about the intervals for repeated screening and the appropriate age to stop screening. In men the harm versus benefit of screening for osteoporosis is unknown. Prescrire states that the need to test for osteoporosis in those who have not had a previous bone fracture is unclear. The International Society for Clinical Densitometry, however, suggest BMD testing for men 70 or older, or those who are indicated for risk equal to that of a 70‑year‑old. A number of tools exist to help determine who is reasonable to test.
Quantitative computed tomography differs from DXA in that it gives separate estimates of BMD for trabecular and cortical bone and reports precise volumetric mineral density in mg/cm rather than BMD's relative Z score. Among QCT's advantages: it can be performed at axial and peripheral sites, can be calculated from existing CT scans without a separate radiation dose, is sensitive to change over time, can analyze a region of any size or shape, excludes irrelevant tissue such as fat, muscle, and air, and does not require knowledge of the patient's subpopulation in order to create a clinical score (e.g. the Z-score of all females of a certain age). Among QCT's disadvantages: it requires a high radiation dose compared to DXA, CT scanners are large and expensive, and because its practice has been less standardized than BMD, its results are more operator-dependent. Peripheral QCT has been introduced to improve upon the limitations of DXA and QCT.
Quantitative ultrasound has many advantages in assessing osteoporosis. The modality is small, no ionizing radiation is involved, measurements can be made quickly and easily, and the cost of the device is low compared with DXA and QCT devices. The calcaneus is the most common skeletal site for quantitative ultrasound assessment because it has a high percentage of trabecular bone that is replaced more often than cortical bone, providing early evidence of metabolic change. Also, the calcaneus is fairly flat and parallel, reducing repositioning errors. The method can be applied to children, neonates, and preterm infants, just as well as to adults. Some ultrasound devices can be used on the tibia.
The term pseudopseudohypoparathyroidism is used to describe a condition where the individual has the phenotypic appearance of pseudohypoparathyroidism type 1a, but is biochemically normal.
The diagnosis of hyperphosphatemia is made through measuring the concentration of phosphate in the blood. A phosphate concentration greater than 1.46 mmol/L (4.5 mg/dL) is indicative of hyperphosphatemia, though further tests may be needed to identify the underlying cause of the elevated phosphate levels.
It was characterized in 1952 by Fuller Albright as "pseudo-pseudohypoparathyroidism" (with hyphen).
The amount of biologically active calcium varies with the level of serum albumin, a protein to which calcium is bound, and therefore levels of "ionized calcium" are better measures than a "total calcium"; however, one can correct a "total calcium" if the albumin level is known.
- A normal "ionized calcium" is 1.12-1.45 mmol/L (4.54-5.61 mg/dL).
- A normal "total calcium" is 2.2-2.6 mmol/L (9-10.5 mg/dl).
- "Total calcium" of less than 8.0 mg/dL is hypocalcaemia, with levels below 1.59 mmol/L (6 mg/dL) generally fatal.
- "Total calcium" of more than 10.6 mg/dL is hypercalcaemia, with levels over 3.753 mmol/L (15.12 mg/dL) generally fatal.
X-Ray
Bubbly lytic lesion / Ground glass
Imaging tests. Computerized tomography or magnetic resonance imaging scans may be used to determine how extensively your bones are affected.
Bone scan. This test uses radioactive tracers, which are injected into your bloodstream. The damaged parts of your bones take up more of the tracers, which show up more brightly on the scan.
Biopsy. This test uses a hollow needle to remove a small piece of the affected bone for laboratory analysis.
Types include:
While biochemically similar, type 1 and 2 disease may be distinguished by the differing urinary excretion of cyclic AMP in response to exogenous PTH.
Some sources also refer to a "type 1c".
Severe hypocalcaemia, a potentially life-threatening condition, is treated as soon as possible with intravenous calcium (e.g. as calcium gluconate). Generally, a central venous catheter is recommended, as the calcium can irritate peripheral veins and cause phlebitis. In the event of a life-threatening attack of low calcium levels or tetany (prolonged muscle contractions), calcium is administered by intravenous (IV) infusion. Precautions are taken to prevent seizures or larynx spasms. The heart is monitored for abnormal rhythms until the person is stable. When the life-threatening attack has been controlled, treatment continues with medicine taken by mouth as often as four times a day.
Long-term treatment of hypoparathyroidism is with vitamin D analogs and calcium supplementation, but may be ineffective in some due to potential renal damage. The N-terminal fragment of parathyroid hormone (PTH 1-34) has full biological activity. The use of pump delivery of synthetic PTH 1-34 provides the closest approach to physiologic PTH replacement therapy. Injections of recombinant human parathyroid hormone are available as treatment in those with low blood calcium levels.
Osteodystrophy is any dystrophic growth of the bone. It is defective bone development that is usually attributable to renal disease or to disturbances in calcium and phosphorus metabolism.
One form is renal osteodystrophy.
Diagnosis is mostly clinical and radiological. Technetium skeletal scintigrams are occasionally used to determine number of exostoses.
Biochemical features are similar to those of rickets. The major factor is an abnormally low vitamin D concentration in blood serum.Major typical biochemical findings include:
- Low serum and urinary calcium
- Low serum phosphate, except in cases of renal osteodystrophy
- Elevated serum alkaline phosphatase (due to an increase in compensatory osteoblast activity)
- Elevated parathyroid hormone (due to low calcium)
Furthermore, a technetium bone scan will show increased activity (also due to increased osteoblasts).
Radiological appearances include:
- Pseudofractures, also called Looser's zones.
- Protrusio acetabuli, a hip joint disorder
High phosphate levels can be avoided with phosphate binders and dietary restriction of phosphate. If the kidneys are operating normally, a saline diuresis can be induced to renally eliminate the excess phosphate. In extreme cases, the blood can be filtered in a process called hemodialysis, removing the excess phosphate.
Treatment in fibrous dysplasia is mainly palliative, and is focused on managing fractures and preventing deformity. There are no medications capable of altering the disease course. Intravenous bisphosphonates may be helpful for treatment of bone pain, but there is no clear evidence that they strengthen bone lesions or prevent fractures. Surgical techniques that are effective in other disorders, such as bone grafting, curettage, and plates and screws, are frequently ineffective in fibrous dysplasia and should be avoided. Intramedullary rods are generally preferred for management of fractures and deformity in the lower extremities. Progressive scoliosis can generally be managed with standard instrumentation and fusion techniques. Surgical management in the craniofacial skeleton is complicated by frequent post-operative FD regrowth, and should focus on correction of functional deformities. Prophylactic optic nerve decompression increases the risk of vision loss and is contraindicated.
Managing endocrinopathies is a critical component of management in FD. All patients with fibrous dysplasia should be evaluated and treated for endocrine diseases associated with McCune–Albright syndrome. In particular untreated growth hormone excess may worsen craniofacial fibrous dysplasia and increase the risk of blindness. Untreated hypophosphatemia increases bone pain and risk of fractures.