Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Preventing recurrence of hyperkalemia typically involves reduction of dietary potassium, removal of an offending medication, and/or the addition of a diuretic (such as furosemide or hydrochlorothiazide). Sodium polystyrene sulfonate and sorbitol (combined as Kayexalate) are occasionally used on an ongoing basis to maintain lower serum levels of potassium though the safety of long-term use of sodium polystyrene sulfonate for this purpose is not well understood.
High dietary sources include vegetables such as avocados, tomatoes and potatoes, fruits such as bananas, oranges and nuts.
Normal serum potassium levels are generally considered to be between 3.5 and 5.3 mmol/L. Levels above 5.5 mmol/L generally indicate hyperkalemia, and those below 3.5 mmol/L indicate hypokalemia.
Type 4 RTA is not actually a tubular disorder at all nor does it have a clinical syndrome similar to the other types of RTA described above. It was included in the classification of renal tubular acidoses as it is associated with a mild (normal anion gap) metabolic acidosis due to a "physiological" reduction in proximal tubular ammonium excretion (impaired ammoniagenesis), which is secondary to hypoaldosteronism, and results in a decrease in urine buffering capacity. Its cardinal feature is hyperkalemia, and measured urinary acidification is normal, hence it is often called hyperkalemic RTA or tubular hyperkalemia.
Causes include:
- Aldosterone deficiency (hypoaldosteronism): Primary vs. hyporeninemic (including diabetic nephropathy)
- Aldosterone resistance
1. Drugs: NSAIDs, ACE inhibitors and ARBs, Eplerenone, Spironolactone, Trimethoprim, Pentamidine
2. Pseudohypoaldosteronism
In some patients, RTA shares features of both dRTA and pRTA. This rare pattern was observed in the 1960s and 1970s as a transient phenomenon in infants and children with dRTA (possibly in relation with some exogenous factor such as high salt intake) and is no longer observed. This form of RTA has also been referred to as juvenile RTA.
Combined dRTA and pRTA is also observed as the result of inherited carbonic anhydrase II deficiency. Mutations in the gene encoding this enzyme give rise to an autosomal recessive syndrome of osteopetrosis, renal tubular acidosis, cerebral calcification, and mental retardation. It is very rare and cases from all over the world have been reported, of which about 70% are from the Magreb region of North Africa, possibly due to the high prevalence of consanguinity there.
The kidney problems are treated as described above. There is no treatment for the osteopetrosis or cerebral calcification.
Type 3 is rarely discussed. Most comparisons of RTA are limited to a comparison of types 1, 2, and 4.
Pseudohypoaldosteronism (PHA) is a condition that mimics hypoaldosteronism. However, the condition is due to a failure of "response" to aldosterone, and levels of aldosterone are actually elevated, due to a lack of feedback inhibition.
This syndrome was first described by Cheek and Perry in 1958. Later pediatric endocrinologist Aaron Hanukoglu reported that there are two independent forms of PHA with different inheritance patterns: Renal form with autosomal dominant inheritance exhibiting salt loss mainly from the kidneys, and multi-system form with autosomal recessive form exhibiting salt loss from kidney, lung, and sweat and salivary glands.
Treatment of severe forms of PHA requires relatively large amounts of sodium chloride.
These conditions also involve hyperkalemia.
Types include: