Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
This inherited condition can be diagnosed with a blood test. If the total cholinesterase activity in the patient's blood is low, this may suggest an atypical form of the enzyme is present, putting the patient at risk of sensitivity to suxamethonium and related drugs. Inhibition studies may also be performed to give more information about potential risk. In some cases, genetic studies may be carried out to help identify the form of the enzyme that is present.
A blood serum glucagon concentration of 1000 pg/mL or greater is indicative of glucagonoma (the normal range is 50–200 pg/mL).
However, recent studies have shown that forty percent of patients have plasma glucagon levels ranging from 500 to 1000 pg/mL. Increased levels have been reported in cases of decreased kidney function, acute pancreatitis, hypercorticism, liver diseases, severe stress, extended fasting, and familial hyperglucagonemia. Rarely do these cases result in levels over 500 pg/mL, except in the case of patients with liver diseases.
Blood tests may also reveal abnormally low concentrations of amino acids, zinc, and essential fatty acids, which are thought to play a role in the development of NME. Skin biopsies may also be taken to confirm the presence of NME.
A CBC can uncover anemia, which is an abnormally low level of hemoglobin.
The tumor itself may be localized by any number of radiographic modalities, including angiography, CT, MRI, PET, and endoscopic ultrasound. Laparotomy is useful for obtaining histologic samples for analysis and confirmation of the glucagonoma.
The dexamethasone suppression test involves administering dexamethasone, a synthetic glucocorticoid, to the horse, and measuring its serum cortisol levels before and 19–24 hours after injection. In a normal horse, dexamethasone administration results in negative feedback to the pituitary, resulting in decreased ACTH production from the pars distalis and, therefore, decreased synthesis of cortisol at the level of the adrenal gland. A horse with PPID, which has an overactive pars intermedia not regulated by glucocorticoid levels, does not suppress ACTH production and, therefore, cortisol levels remain high. False negatives can occur in early disease. Additionally, dexamethasone administration may increase the risk of laminitis in horses already prone to the disease. For these reasons, the dexamethasone suppression test is currently not recommended for PPID testing.
Diagnosis is based on clinical and laboratory findings of low serum osmolality and low serum sodium.
Urinalysis reveals a highly concentrated urine with a high fractional excretion of sodium (high sodium urine content compared to the serum sodium).
A suspected diagnosis is based on a serum sodium under 138. A confirmed diagnosis has seven elements: 1) a decreased effective serum osmolality - <275 mOsm/kg of water; 2) urinary sodium concentration high - over 40 mEq/L with adequate dietary salt intake; 3) no recent diuretic usage; 4) no signs of ECF volume depletion or excess; 5) no signs of decreased arterial blood volume - cirrhosis, nehprosis, or congestive heart failure; 6) normal adrenal and thyroid function; and 7) no evidence of hyperglycemia (diabetes mellitus), hypertriglyceridemia, or hyperproteinia (myeloma).
There are nine supplemental features: 1) a low BUN; 2) a low uric acid; 3) a normal creatinine; 4) failure to correct hyponatremia with IV normal saline; 5) successful correction of hyponatremia with fluid restriction; 6) a fractional sodium excretion >1%; 7) a fractional urea excretion >55%; 8) an abnormal water load test; and 9) an elevated plasma AVP.
Persistently increased blood pressure may also be due to kidney disease or hyperthyroidism. When a cause is not readily apparent, and especially when hypokalemia is identified, hyperaldosteronism should be considered. Diagnostic imaging, usually beginning with abdominal ultrasound, may identify that one or both adrenal glands are enlarged. Imaging may also detect metastasis and usually includes radiographs of the chest in addition to abdominal ultrasound and/or computerized tomography (CT).
The ratio of plasma aldosterone concentration (PAC) to plasma renin activity (PRA) can be used as a screening test for PHA. In cats with unilateral or bilateral zona glomerulosa tumors, the PAC may be very high while the PRA is completely suppressed. In cats with idiopathic bilateral nodular hyperplasia of the zona glomerulosa, the PAC may be slightly elevated or high normal. In the presence of hypokalemia even a mildly elevated aldosterone should be considered inappropriately high. A high-normal or elevated PAC with a low PRA indicates persistent aldosterone synthesis in the presence of little or no stimulation of the renin-angiotensin system.
Although corticoid-to-creatinine ratios are generally higher in horses with PPID, numerous false positives and false negatives occur with this test, so it is not recommended.
Antidiuretic hormone (ADH) is released from the posterior pituitary for a number of physiologic reasons. The majority of people with hyponatremia, other than those with excessive water intake (polydipsia) or renal salt wasting, will have elevated ADH as the cause of their hyponatremia. However, not every person with hyponatremia and elevated ADH has SIADH. One approach to a diagnosis is to divide ADH release into appropriate (not SIADH) or inappropriate (SIADH).
Appropriate ADH release can be a result of hypovolemia, a so-called osmotic trigger of ADH release. This may be true hypovolemia, as a result of dehydration with fluid losses replaced by free water. It can also be perceived hypovolemia, as in the conditions of congestive heart failure (CHF) and cirrhosis in which the kidneys perceive a lack of intravascular volume. The hyponatremia caused by appropriate ADH release (from the kidneys' perspective) in both CHF and cirrhosis have been shown to be an independent poor prognostic indicator of mortality.
Appropriate ADH release can also be a result of non-osmotic triggers. Symptoms such as nausea/vomiting and pain are significant causes of ADH release. The combination of osmotic and non-osmotic triggers of ADH release can adequately explain the hyponatremia in the majority of people who are hospitalized with acute illness and are found to have mild to moderate hyponatremia. SIADH is less common than appropriate release of ADH. While it should be considered in a differential, other causes should be considered as well.
Cerebral salt wasting syndrome (CSWS) also presents with hyponatremia, there are signs of dehydration for which reason the management is diametrically opposed to SIADH. Importantly CSWS can be associated with subarachnoid hemorrhage (SAH) which may require fluid supplementation rather than restriction to prevent brain damage.
Most cases of hyponatremia in children are caused by appropriate secretion of antidiuretic hormone rather than SIADH or another cause.
Heightened glucagon secretion can be treated with the administration of octreotide, a somatostatin analog, which inhibits the release of glucagon. Doxorubicin and streptozotocin have also been used successfully to selectively damage alpha cells of the pancreatic islets. These do not destroy the tumor, but help to minimize progression of symptoms.
The only curative therapy for glucagonoma is surgical resection, where the tumor is removed. Resection has been known to reverse symptoms in some patients.
Evaluation of a child with persistent high blood pressure usually involves analysis of blood electrolytes and an aldosterone level, as well as other tests. In Liddle's disease, the serum sodium is typically elevated, the serum potassium is reduced, and the serum bicarbonate is elevated. These findings are also found in hyperaldosteronism, another rare cause of hypertension in children. Primary hyperaldosteronism (also known as Conn's syndrome), is due to an aldosterone-secreting adrenal tumor (adenoma) or adrenal hyperplasia. Aldosterone levels are high in hyperaldosteronism, whereas they are low to normal in Liddle syndrome.
A genetic study of the ENaC sequences can be requested to detect mutations (deletions, insertions, missense mutations) and get a diagnosis.
The clinical presentation of ALD can vary greatly, making diagnosis difficult. With the variety of phenotypes, clinical suspicion of ALD can result from a variety of different presentations. Symptoms vary based on the disease phenotype, and even within families or between twins. When ALD is suspected based on clinical symptoms, the initial testing usually includes plasma very long chain fatty acid (VLCFA) determination using gas chromatography-mass spectrometry. The concentration of unsaturated VLCFA, particularly 26 carbon chains is significantly elevated in males with ALD, even prior to the development of other symptoms. Confirmation of ALD after positive plasma VLCFA determination usually involves molecular genetic analysis of "ABCD1". In females, where plasma VLCFA measurement is not always conclusive (some female carriers will have normal VLCFA in plasma), molecular analysis is preferred, particularly in cases where the mutation in the family is known. Although the clinical phenotype is highly variable among affected males, the elevations of VLCFA are present in all males with an "ABCD1" mutation.
Because the characteristic elevations associated with ALD are present at birth, well before any symptoms are apparent, there have been methods developed in the interests of including it in newborn screening programs. One of the difficulties with ALD as a disease included in universal newborn screening is the difficulty in predicting the eventual phenotype that an individual will express. The accepted treatment for affected boys presenting with the cerebral childhood form of the disease is a bone marrow transplant, a procedure which carries significant risks. However, because most affected males will demonstrate adrenal insufficiency, early discovery and treatment of this symptom could potentially prevent complications and allow these patients to be monitored for other treatment in the future, depending on the progression of their disease.
The Loes score is a rating of the severity of abnormalities in the brain found on MRI. It ranges from 0 to 34, based on a point system derived from the location and extent of disease and the presence of atrophy in the brain, either localized to specific points or generally throughout the brain. A Loes score of 0.5 or less is classified as normal, while a Loes score of 14 or greater is considered severe. It was developed by neuroradiologist Daniel J. Loes MD and is an important tool in assessing disease progression and the effectiveness of therapy.
Unilateral primary hyperaldosteronism due to an adrenocortical adenoma or adrenocarcinoma can be potentially cured surgically. Unilateral adrenalectomy is the treatment of choice for unilateral PHA. Potential complications include hemorrhage and postoperative hypokalemia. With complete removal of the tumor, prognosis is excellent.
Bilateral primary hyperaldosteronism due to hyperplasia of the zona glomerulosa or metastasized adrenocortical adenocarcinoma should be treated medically. Medical therapy is aimed at normalizing blood pressure and plasma potassium concentration. Mineralocorticoid receptor blockers, such as spironolactone, coupled with potassium supplementation are the most commonly used treatments. Specific therapy for treating high blood pressure (e.g., amlodipine), should be added if necessary.
Familial LPL deficiency should be considered in anyone with severe hypertriglyceridemia and the chylomicronemia syndrome. The absence of secondary causes of severe hypertriglyceridemia (like e.g. diabetes, alcohol, estrogen-, glucocorticoid-, antidepressant- or isotretinoin-therapy, certain antihypertensive agents, and paraproteinemic disorders) increases the possibility of LPL deficiency. In this instance besides LPL also other loss-of-function mutations in genes that regulate catabolism of triglyceride-rich lipoproteins (like e.g. ApoC2, ApoA5, LMF-1, GPIHBP-1 and GPD1) should also be considered
The diagnosis of familial lipoprotein lipase deficiency is finally confirmed by detection of either homozygous or compound heterozygous pathogenic gene variants in "LPL" with either low or absent lipoprotein lipase enzyme activity.
Lipid measurements
· Milky, lipemic plasma revealing severe hyperchylomicronemia;
· Severely elevated fasting plasma triglycerides (>2000 mg/dL);
LPL enzyme
· Low or absent LPL activity in post-heparin plasma;
· LPL mass level reduced or absent in post-heparin plasma;
Molecular genetic testing
The LPL gene is located on the short (p) arm of chromosome 8 at position 22. More than 220 mutations in the LPL gene have been found to cause familial lipoprotein lipase deficiency so far.
Several other illnesses can present with a monoclonal gammopathy, and the monoclonal protein may be the first discovery before a formal diagnosis is made:
Prognosis for recovery following administration of succinylcholine is excellent when medical support includes close monitoring and respiratory support measures.
In nonmedical settings in which subjects with pseudocholinesterase deficiency are exposed to cocaine, sudden cardiac death can occur.
Testing the general population under the age of 40 without symptoms is of unclear benefit.
In addition to tests corresponding to the above findings (such as EMG for neuropathy, CT scan, bone marrow biopsy to detect clonal plasma cells, plasma or serum protein electrophoresis to myeloma proteins, other tests can give abnormal results supporting the diagnosis of POEMS syndrome. These included raised blood levels of VEGF, thrombocytes, and/or erythrocyte parameters.
Typically in hypobetalipoproteinemia, plasma cholesterol levels will be around 80–120 mg/dL, LDL cholesterol will be around 50–80 mg/dL.
Retinyl esters can be distinguished from retinol in serum and other tissues and quantified with the use of methods such as high-performance liquid chromatography.
Elevated amounts of retinyl ester (i.e., > 10% of total circulating vitamin A) in the fasting state have been used as markers for chronic hypervitaminosis A in humans and monkeys. This increased retinyl ester may be due to decreased hepatic uptake of vitamin A and the leaking of esters into the bloodstream from saturated hepatic stellate cells.
Another measure of insulin resistance is the modified insulin suppression test developed by Gerald Reaven at Stanford University. The test correlates well with the euglycemic clamp, with less operator-dependent error. This test has been used to advance the large body of research relating to the metabolic syndrome.
Patients initially receive 25 μg of octreotide (Sandostatin) in 5 mL of normal saline over 3 to 5 minutes via intravenous infusion (IV) as an initial bolus, and then, are infused continuously with an intravenous infusion of somatostatin (0.27 μg/m/min) to suppress endogenous insulin and glucose secretion. Next, insulin and 20% glucose are infused at rates of 32 and 267 mg/m/min, respectively. Blood glucose is checked at zero, 30, 60, 90, and 120 minutes, and thereafter, every 10 minutes for the last half-hour of the test. These last four values are averaged to determine the steady-state plasma glucose level (SSPG). Subjects with an SSPG greater than 150 mg/dL are considered to be insulin-resistant.
The amount of biologically active calcium varies with the level of serum albumin, a protein to which calcium is bound, and therefore levels of "ionized calcium" are better measures than a "total calcium"; however, one can correct a "total calcium" if the albumin level is known.
- A normal "ionized calcium" is 1.12-1.45 mmol/L (4.54-5.61 mg/dL).
- A normal "total calcium" is 2.2-2.6 mmol/L (9-10.5 mg/dl).
- "Total calcium" of less than 8.0 mg/dL is hypocalcaemia, with levels below 1.59 mmol/L (6 mg/dL) generally fatal.
- "Total calcium" of more than 10.6 mg/dL is hypercalcaemia, with levels over 3.753 mmol/L (15.12 mg/dL) generally fatal.
The gold standard for investigating and quantifying insulin resistance is the "hyperinsulinemic euglycemic clamp," so-called because it measures the amount of glucose necessary to compensate for an increased insulin level without causing hypoglycemia. It is a type of glucose clamp technique. The test rarely is performed in clinical care, but is used in medical research, for example, to assess the effects of different medications. The rate of glucose infusion commonly is referred to in diabetes literature as the GINF value.
The procedure takes about two hours. Through a peripheral vein, insulin is infused at 10–120 mU per m per minute. In order to compensate for the insulin infusion, glucose 20% is infused to maintain blood sugar levels between 5 and 5.5 mmol/L. The rate of glucose infusion is determined by checking the blood sugar levels every five to ten minutes.
The rate of glucose infusion during the last thirty minutes of the test determines insulin sensitivity. If high levels (7.5 mg/min or higher) are required, the patient is insulin-sensitive. Very low levels (4.0 mg/min or lower) indicate that the body is resistant to insulin action. Levels between 4.0 and 7.5 mg/min are not definitive, and suggest "impaired glucose tolerance," an early sign of insulin resistance.
This basic technique may be enhanced significantly by the use of glucose tracers. Glucose may be labeled with either stable or radioactive atoms. Commonly used tracers are 3-H glucose (radioactive), 6,6 H-glucose (stable) and 1-C Glucose (stable). Prior to beginning the hyperinsulinemic period, a 3h tracer infusion enables one to determine the basal rate of glucose production. During the clamp, the plasma tracer concentrations enable the calculation of whole-body insulin-stimulated glucose metabolism, as well as the production of glucose by the body (i.e., endogenous glucose production).
In suspected cases of Addison's disease, demonstration of low adrenal hormone levels even after appropriate stimulation (called the ACTH stimulation test or synacthen test) with synthetic pituitary ACTH hormone tetracosactide is needed for the diagnosis. Two tests are performed, the short and the long test. It should be noted that dexamethasone does not cross-react with the assay and can be administered concomitantly during testing.
The short test compares blood cortisol levels before and after 250 micrograms of tetracosactide (intramuscular or intravenous) is given. If, one hour later, plasma cortisol exceeds 170 nmol/l and has risen by at least 330 nmol/l to at least 690 nmol/l, adrenal failure is excluded. If the short test is abnormal, the long test is used to differentiate between primary adrenal insufficiency and secondary adrenocortical insufficiency.
The long test uses 1 mg tetracosactide (intramuscular). Blood is taken 1, 4, 8, and 24 hr later. Normal plasma cortisol level should reach 1000 nmol/l by 4 hr. In primary Addison's disease, the cortisol level is reduced at all stages, whereas in secondary corticoadrenal insufficiency, a delayed but normal response is seen.
Other tests may be performed to distinguish between various causes of hypoadrenalism, including renin and adrenocorticotropic hormone levels, as well as medical imaging - usually in the form of ultrasound, computed tomography or magnetic resonance imaging.
Adrenoleukodystrophy, and the milder form, adrenomyeloneuropathy, cause adrenal insufficiency combined with neurological symptoms. These diseases are estimated to be the cause of adrenal insufficiency in about 35% of male patients with idiopathic Addison’s disease, and should be considered in the differential diagnosis of any male with adrenal insufficiency. Diagnosis is made by a blood test to detect very long chain fatty acids.
Tests may include:
- bone X-rays
- blood calcium test
- cholesterol test
- liver function test
- blood test for vitamin A
A diagnosis of Waldenström's macroglobulinemia depends on a significant monoclonal IgM spike evident in blood tests and malignant cells consistent with the disease in bone marrow biopsy samples. Blood tests show the level of IgM in the blood and the presence of proteins, or tumor markers, that are the key symptoms of WM. A bone marrow biopsy provides a sample of bone marrow, usually from the back of the pelvis bone. The sample is extracted through a needle and examined under a microscope. A pathologist identifies the particular lymphocytes that indicate WM. Flow cytometry may be used to examine markers on the cell surface or inside the lymphocytes.
Additional tests such as computed tomography (CT or CAT) scan may be used to evaluate the chest, abdomen, and pelvis, particularly swelling of the lymph nodes, liver, and spleen. A skeletal survey can help distinguish between WM and multiple myeloma. Anemia is typically found in 80% of patients with WM. A low white blood cell count, and low platelet count in the blood may be observed. A low level of neutrophils (a specific type of white blood cell) may also be found in some individuals with WM.
Chemistry tests include lactate dehydrogenase (LDH) levels, uric acid levels, erythrocyte sedimentation rate (ESR), kidney and liver function, total protein levels, and an albumin-to-globulin ratio. The ESR and uric acid level may be elevated. Creatinine is occasionally elevated and electrolytes are occasionally abnormal. A high blood calcium level is noted in approximately 4% of patients. The LDH level is frequently elevated, indicating the extent of Waldenström's macroglobulinemia–related tissue involvement. Rheumatoid factor, cryoglobulins, direct antiglobulin test and cold agglutinin titre results can be positive. Beta-2 microglobulin and C-reactive protein test results are not specific for Waldenström's macroglobulinemia. Beta-2 microglobulin is elevated in proportion to tumor mass. Coagulation abnormalities may be present. Prothrombin time, activated partial thromboplastin time, thrombin time, and fibrinogen tests should be performed. Platelet aggregation studies are optional. Serum protein electrophoresis results indicate evidence of a monoclonal spike but cannot establish the spike as IgM. An M component with beta-to-gamma mobility is highly suggestive of Waldenström's macroglobulinemia. Immunoelectrophoresis and immunofixation studies help identify the type of immunoglobulin, the clonality of the light chain, and the monoclonality and quantitation of the paraprotein. High-resolution electrophoresis and serum and urine immunofixation are recommended to help identify and characterize the monoclonal IgM paraprotein.
The light chain of the monoclonal protein is usually the kappa light chain. At times, patients with Waldenström's macroglobulinemia may exhibit more than one M protein. Plasma viscosity must be measured. Results from characterization studies of urinary immunoglobulins indicate that light chains (Bence Jones protein), usually of the kappa type, are found in the urine. Urine collections should be concentrated.
Bence Jones proteinuria is observed in approximately 40% of patients and exceeds 1 g/d in approximately 3% of patients. Patients with findings of peripheral neuropathy should have nerve conduction studies and antimyelin associated glycoprotein serology.
Criteria for diagnosis of Waldenström's macroglobulinemia include:
1. IgM monoclonal gammopathy that excludes chronic lymphocytic leukemia and Mantle cell lymphoma
2. Evidence of anemia, constitutional symptoms, hyperviscosity, swollen lymph nodes, or enlargement of the liver and spleen that can be attributed to an underlying lymphoproliferative disorder.
The protein electrophoresis test should be repeated annually, and if there is any concern for a rise in the level of monoclonal protein, then prompt referral to a hematologist is required. The hematologist, when first evaluating a case of MGUS, will usually perform a skeletal survey (X-rays of the proximal skeleton), check the blood for hypercalcemia and deterioration in renal function, check the urine for Bence Jones protein and perform a bone marrow biopsy. If none of these tests are abnormal, a patient with MGUS is followed up once every 6 months to a year with a blood test (serum protein electrophoresis). Although patients with MGUS have sometimes been reported to suffer from Small Fiber Neuropathy in monoclonal gammopathy of undetermined significance:a debilitating condition which causes bizarre sensory problems to painful sensory problems. peripheral neuropathy, no treatment is indicated.