Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Suspicion of factor V Leiden being the cause for any thrombotic event should be considered in any Caucasian patient below the age of 45, or in any person with a family history of venous thrombosis.
There are a few different methods by which this condition can be diagnosed. Most laboratories screen 'at risk' patients with either a snake venom (e.g. dilute Russell's viper venom time) based test or an aPTT based test. In both methods, the time it takes for blood to clot is decreased in the presence of the factor V Leiden mutation. This is done by running two tests simultaneously; one test is run in the presence of activated protein C (APC) and the other, in the absence. A ratio is determined based on the two tests and the results signify to the laboratory whether APC is working or not.
There is also a genetic test that can be done for this disorder. The mutation (a 1691G→A substitution) removes a cleavage site of the restriction endonuclease "MnlI", so PCR, treatment with "MnlI", and then DNA electrophoresis will give a diagnosis. Other PCR based assays such as iPLEX can also identify zygosity and frequency of the variant.
There are divergent views as to whether everyone with an unprovoked episode of thrombosis should be investigated for thrombophilia. Even those with a form of thrombophilia may not necessarily be at risk of further thrombosis, while recurrent thrombosis is more likely in those who have had previous thrombosis even in those who have no detectable thrombophilic abnormalities. Recurrent thromboembolism, or thrombosis in unusual sites (e.g. the hepatic vein in Budd-Chiari syndrome), is a generally accepted indication for screening. It is more likely to be cost-effective in people with a strong personal or family history of thrombosis. In contrast, the combination of thrombophilia with other risk factors may provide an indication for preventative treatment, which is why thrombophilia testing may be performed even in those who would not meet the strict criteria for these tests. Searching for a coagulation abnormality is not normally undertaken in patients in whom thrombosis has an obvious trigger. For example, if the thrombosis is due to immobilization after recent orthopedic surgery, it is regarded as "provoked" by the immobilization and the surgery and it is less likely that investigations will yield clinically important results.
When venous thromboembolism occurs when a patient is experiencing transient major risk factors such as prolonged immobility, surgery, or trauma, testing for thrombophilia is not appropriate because the outcome of the test would not change a patient's indicated treatment. In 2013, the American Society of Hematology, as part of recommendations in the Choosing Wisely campaign, cautioned against overuse of thrombophilia screening; false positive results of testing would lead to people inappropriately being labeled as having thrombophilia, and being treated with anticoagulants without clinical need
In the United Kingdom, professional guidelines give specific indications for thrombophilia testing. It is recommended that testing be done only after appropriate counseling, and hence the investigations are usually not performed at the time when thrombosis is diagnosed but at a later time. In particular situations, such as retinal vein thrombosis, testing is discouraged altogether because thrombophilia is not regarded as a major risk factor. In other rare conditions generally linked with hypercoagulability, such as cerebral venous thrombosis and portal vein thrombosis, there is insufficient data to state for certain whether thrombophilia screening is helpful, and decisions on thrombophilia screening in these conditions are therefore not regarded as evidence-based. If cost-effectiveness (quality-adjusted life years in return for expenditure) is taken as a guide, it is generally unclear whether thrombophilia investigations justify the often high cost, unless the testing is restricted to selected situations.
Recurrent miscarriage is an indication for thrombophilia screening, particularly antiphospholipid antibodies (anti-cardiolipin IgG and IgM, as well as lupus anticoagulant), factor V Leiden and prothrombin mutation, activated protein C resistance and a general assessment of coagulation through an investigation known as thromboelastography.
Women who are planning to use oral contraceptives do not benefit from routine screening for thrombophilias, as the absolute risk of thrombotic events is low. If either the woman or a first-degree relative has suffered from thrombosis, the risk of developing thrombosis is increased. Screening this selected group may be beneficial, but even when negative may still indicate residual risk. Professional guidelines therefore suggest that alternative forms of contraception be used rather than relying on screening.
Thrombophilia screening in people with arterial thrombosis is generally regarded unrewarding and is generally discouraged, except possibly for unusually young patients (especially when precipitated by smoking or use of estrogen-containing hormonal contraceptives) and those in whom revascularization, such as coronary arterial bypass, fails because of rapid occlusion of the graft.
The diagnosis for deficiency of protein S can be done via reviewing family history of condition and genetic testing, as well as the following:
- Protein S antigen test
- Coagulation test (prothrombin time test)
- Thrombotic disease investigation
- Factor V Leiden test
In terms of treatment for protein S deficiency the following are consistent with the "management" (and administration of) individuals with this condition ( it should be noted that the prognosis for "inherited" homozygotes is usually in line with a higher incidence of thrombosis for the affected individual):
Studies have found that about 5 percent of Caucasians in North America have factor V Leiden. The condition is less common in Latin Americans and African-Americans and is extremely rare in people of Asian descent.
Up to 30 percent of patients who present with deep vein thrombosis (DVT) or pulmonary embolism have this condition. The risk of developing a clot in a blood vessel depends on whether a person inherits one or two copies of the factor V Leiden mutation. Inheriting one copy of the mutation from a parent (heterozygous) increases by fourfold to eightfold the chance of developing a clot. People who inherit two copies of the mutation (homozygous), one from each parent, may have up to 80 times the usual risk of developing this type of blood clot. Considering that the risk of developing an abnormal blood clot averages about 1 in 1,000 per year in the general population, the presence of one copy of the factor V Leiden mutation increases that risk to between 4 in 1,000 to 8 in 1,000. Having two copies of the mutation may raise the risk as high as 80 in 1,000. It is unclear whether these individuals are at increased risk for "recurrent" venous thrombosis. While only 1 percent of people with factor V Leiden have two copies of the defective gene, these homozygous individuals have a more severe clinical condition. The presence of acquired risk factors for venous thrombosis—including smoking, use of estrogen-containing (combined) forms of hormonal contraception, and recent surgery—further increase the chance that an individual with the factor V Leiden mutation will develop DVT.
Women with factor V Leiden have a substantially increased risk of clotting in pregnancy (and on estrogen-containing birth control pills or hormone replacement) in the form of deep vein thrombosis and pulmonary embolism. They also may have a small increased risk of preeclampsia, may have a small increased risk of low birth weight babies, may have a small increased risk of miscarriage and stillbirth due to either clotting in the placenta, umbilical cord, or the fetus (fetal clotting may depend on whether the baby has inherited the gene) or influences the clotting system may have on placental development. Note that many of these women go through one or more pregnancies with no difficulties, while others may repeatedly have pregnancy complications, and still others may develop clots within weeks of becoming pregnant.
Diagnosis of inherited hypoprothrombinemia, relies heavily on a patient's medical history, family history of bleeding issues, and lab exams performed by a hematologist. A physical examination by a general physician should also be performed in order to determine whether the condition is congenital or acquired, as well as ruling out other possible conditions with similar symptoms. For acquired forms, information must be taken regarding current diseases and medications taken by the patient, if applicable.
Lab tests that are performed to determine diagnosis:
1. Factor Assays: To observe the performance of specific factors (II) to identify missing/poorly performing factors. These lab tests are typically performed first in order to determine the status of the factor.
2. Prothrombin Blood Test: Determines if patient has deficient or low levels of Factor II.
3. Vitamin K1 Test: Performed to evaluate bleeding of unknown causes, nosebleeds, and identified bruising. To accomplish this, a band is wrapped around the patient's arm, 4 inches above the superficial vein site in the elbow pit. The vein is penetrated with the needle and amount of blood required for testing is obtained. Decreased vitamin K levels are suggestive of hypoprothrombinemia. However, this exam is rarely used as a Prothrombin Blood Test is performed beforehand.
Tests for thrombophilia include complete blood count (with examination of the blood film), prothrombin time, partial thromboplastin time, thrombodynamics test, thrombin time and reptilase time, lupus anticoagulant, anti-cardiolipin antibody, anti-β2 glycoprotein 1 antibody, activated protein C resistance, fibrinogen tests, factor V Leiden and prothrombin mutation, and basal homocysteine levels. Testing may be more or less extensive depending on clinical judgement and abnormalities detected on initial evaluation.
For hereditary cases, the patient must have at least 2 abnormal tests plus family history.
A 28 month old girl, showed symptoms from 8 months of age and consisted of complaints of painful bruises over lower limbs, and disturbed, painful sleep at night. Family history revealed older brother also suffered similar problems and died at age of two years possibly due to bleeding - no diagnosis was confirmed. Complete blood count and blood smear was determined as normal. No abnormality in fibrinogen, liver function test, and bleeding time. However, prothrombin levels were less than 1% so patient was transfused with fresh frozen plasma (FFP). Post transfusion methods, patient is now 28 months old and living healthy life. The only treatment that is needed to date is for the painful bruises, which the patient is given FFP every 5-6 weeks.
Twelve day old boy admitted for symptoms consisting of blood stained vomiting and dark colored stool. Upon admission into hospital, patient received vitamin K and FFP transfusion. No family history of similarity in symptoms that were presented. At 40 days old, patient showed symptoms of tonic posturing and constant vomiting. CT scan revealed subdural hemorrhage, and other testing showed low hb levels of 7%, platelets at 3.5 lakhs/cu mm. PT examination was 51 seconds and aPTT at 87 seconds. Prothrombin activity levels were less than 1%. All other exams revealed no abnormalities. Treatment methods included vitamin K and FFP, as well as ventilator support and packed red blood cell transfusion (PRBC). At half a year of age, condition consisted of possible poor neurological outcome secondary to CNS bleeding. Treatment of very frequent transfusion was needed for patient.
Recent study illustrated a patient with 2 weeks of continuous bleeding, with presence of epistaxis, melena, hematuria, and pruritic rash with no previous bleeding history. Vitals were all within normal range, however, presence of ecchymoses was visible in chest, back and upper areas. Lab exams revealed prolonged prothrombin time (PT) of 34.4 and acquired partial thromboplastin time (aPTT) of 81.7, as well as elevated liver function tests. Discontinuation of atorvastatin, caused liver enzymes to go back to normal. Treatment of vitamin K, antibiotics, and fresh frozen plasma (FFP) did not have an impact on coagulopathy. Mixing of PT and aPTT was performed in order to further evaluate coagulopathy and revealed no correction. Factor activity assays were performed to determine the presence of a specific one. Testing revealed that factor II activity could not be quantified. Further studies showed that acquired factor II inhibitor was present without the lupus anticoagulant, with no clear cause associated with the condition. Aimed to control bleeding and getting rid of the inhibitor through directly treating the underlying disease or through immunosuppressive therapy. Corticosteroids and intravenous immunoglobulin improved the PT and aPTT. Did not improve bleeding conditions until treatment of transfusion with activated PCC. Treatment of inhibitor required Rituximab, which was shown to increase factor II levels to 264%. Study shows that when a patient with no history of coagulopathy presents themselves with hemorrhagic diathesis, direct testing of a factor II inhibitor should be performed initially.
A pregnant woman with a history of haemophilia in her family can test for the haemophilia gene. Such tests include:
- chorionic villus sampling (CVS) – a small sample of the placenta is removed from the womb and tested for the haemophilia gene, usually during weeks 11-14 of pregnancy
- amniocentesis – a sample of amniotic fluid is taken for testing, usually during weeks 15-20 of pregnancy
There's a small risk of these procedures causing problems such as miscarriage or premature labour, so the woman may discuss this with the doctor in charge of her care.
Genetic testing and counselling are available to help determine the risk of passing the condition onto a child. This may involve testing a sample of tissue or blood to look for signs of the genetic mutation that causes haemophilia.
The variant causes elevated plasma prothrombin levels (hyperprothrombinemia), possibly due to increased pre-mRNA stability. Prothrombin is the precursor to thrombin, which plays a key role in causing blood to clot (blood coagulation). G20210A can thus contribute to a state of hypercoagulability, but not particularly with arterial thrombosis. A 2006 meta-analysis showed only a 1.3-fold increased risk for coronary disease.
It confers a 2- to 3-fold higher risk of VTE. Deficiencies in the anticoagulants Protein C and Protein S give a higher risk (5- to 10-fold). Behind non-O blood type and factor V Leiden, prothrombin G20210A is one of the most common genetic risk factors for VTE. It was realized in 1996 that a particular change in the genetic code causes the body to make too much of the prothrombin protein. By having too much prothrombin, it increases the chances the blood clotting. Individuals who carry the condition have the prothrombin mutation which can be inherited by offspring.
Having the prothrombin mutation increases the risk of developing a DVT (Deep vein thrombosis), known as a blood clot in the deep veins, often but not always in the legs. DVTs are threatening as they can damage the veins throughout the body, causing pain and swelling, and sometimes leading to disability.
Most variety of people who have this prothrombin gene mutation do not require any treatment but need to be cautious throughout periods when the possibility of getting a blood clot may be enlarged (e.g. after surgery, during long flights etc.); occasionally people with the mutation may need to go on blood thinning medication to decrease the risk of developing blood clots. As there is no cure for the mutation, studies throughout the world are becoming conversant, emitting various medications in order to decrease risk factors.
Heterozygous carriers who take combined birth control pills are at a 15-fold increased risk of VTE, while carriers also heterozygous with factor V Leiden have an approximate 20-fold higher risk. In a recommendation statement on VTE, genetic testing for G20210A in adults that developed unprovoked VTE was disadvised, as was testing in asymptomatic family members related to G20210A carriers who developed VTE. In those who develop VTE, the results of thrombophilia tests (wherein the variant can be detected) rarely play a role in the length of treatment.
Many conditions mimic or may be mistaken for warfarin necrosis, including pyoderma gangrenosum or necrotizing fasciitis. Warfarin necrosis is also different from another drug eruption associated with warfarin, purple toe syndrome, which usually occurs three to eight weeks after the start of anticoagulation therapy. No report has described this disorder in the immediate postpartum period in patients with protein S deficiency.
When vWD is suspected, blood plasma of a patient must be investigated for quantitative and qualitative deficiencies of vWF. This is achieved by measuring the amount of vWF in a vWF antigen assay and the functionality of vWF with a glycoprotein (GP)Ib binding assay, a collagen binding assay, or a ristocetin cofactor activity (RiCof) or ristocetin induced platelet agglutination (RIPA) assays. Factor VIII levels are also performed because factor VIII is bound to vWF which protects the factor VIII from rapid breakdown within the blood. Deficiency of vWF can then lead to a reduction in factor VIII levels, which explains the elevation in PTT. Normal levels do not exclude all forms of vWD, particularly type 2, which may only be revealed by investigating platelet interaction with subendothelium under flow, a highly specialized coagulation study not routinely performed in most medical laboratories. A platelet aggregation assay will show an abnormal response to ristocetin with normal responses to the other agonists used. A platelet function assay may give an abnormal collagen/epinephrine closure time, and in most cases, a normal collagen/ADP time. Type 2N may be considered if factor VIII levels are disproportionately low, but confirmation requires a "factor VIII binding" assay. Additional laboratory tests that help classify sub-types of vWD include von-willebrand multimer analysis, modified ristocetin induced platelet aggregation assay and vWF propeptide to vWF antigen ratio propeptide. In cases of suspected acquired von-Willebrand syndrome, a mixing study study (analysis of patient plasma along with pooled normal plasma/PNP and a mixture of the two tested immediately, at one hour, and at two hours) should be performed. Detection of vWD is complicated by vWF being an acute phase reactant with levels rising in infection, pregnancy, and stress.
Other tests performed in any patient with bleeding problems are a complete blood count-CBC (especially platelet counts), activated partial thromboplastin time-APTT, prothrombin time with International Normalized Ratio-PTINR, thrombin time-TT, and fibrinogen level. Testing for factor IX may also be performed if hemophilia B is suspected. Other coagulation factor assays may be performed depending on the results of a coagulation screen. Patients with von Willebrand disease typically display a normal prothrombin time and a variable prolongation of partial thromboplastin time.
The testing for vWD can be influenced by laboratory procedures. Numerous variables exist in the testing procedure that may affect the validity of the test results and may result in a missed or erroneous diagnosis. The chance of procedural errors are typically greatest during the preanalytical phase (during collecting storage and transportation of the specimen) especially when the testing is contracted to an outside facility and the specimen is frozen and transported long distances. Diagnostic errors are not uncommon, and the rate of testing proficiency varies amongst laboratories, with error rates ranging from 7 to 22% in some studies to as high as 60% in cases of misclassification of vWD subtype. To increase the probability of a proper diagnosis, testing should be done at a facility with immediate on-site processing in a specialized coagulation laboratory.
Because prothrombin is also known as factor II, the mutation is also sometimes referred to as the factor II mutation or simply the prothrombin mutation; in either case, the names may appear with or without the accompanying G20210A location specifier (unhelpfully, since prothrombin mutations other than G20210A are known).
Blood tests are neede to differentiate FVII deficiency from other bleeding disorders. Typical is a discordance between the prolonged prothrombin time (PT) and normal levels for the activated partial thromboplastin time (APTT). FVII levels are <10IU/dl in homozygous individuals, and between 20-60 in heterozygous carriers. The FCVII: C assay supports the diagnosis.
The FVII gene (F7) is found on chromosome 13q34. Heterogeneous mutations have been described in FVII deficient patients.
Antiphospholipid syndrome is tested for in the laboratory using both liquid phase coagulation assays (lupus anticoagulant) and solid phase ELISA assays (anti-cardiolipin antibodies).
Genetic thrombophilia is part of the differential diagnosis of APS and can coexist in some APS patients. Presence of genetic thrombophilia may determine the need for anticoagulation therapy. Thus genetic thrombophilia screening can consist of:
- Further studies for factor V Leiden variant and the prothrombin G20210A mutation, factor VIII levels, MTHFR mutation.
- Levels of protein C, free and total protein S, factor VIII, antithrombin, plasminogen, tissue plasminogen activator (TPA) and plasminogen activator inhibitor-1 (PAI-1)
The testing of antibodies to the possible individual targets of aPL such as β glycoprotein 1 and antiphosphatidyl serine is currently under debate as testing for anticardiolipin appears to be currently sensitive and specific for diagnosis of APS even though cardiolipin is not considered an in vivo target for antiphospholipid antibodies.
The diagnosis of DIC is not made on a single laboratory value, but rather the constellation of laboratory markers and a consistent history of an illness known to cause DIC. Laboratory markers consistent with DIC include:
- Characteristic history (this is important because severe liver disease can essentially have the same laboratory findings as DIC)
- Prolongation of the prothrombin time (PT) and the activated partial thromboplastin time (aPTT) reflect the underlying consumption and impaired synthesis of the coagulation cascade.
- Fibrinogen level has initially thought to be useful in the diagnosis of DIC but because it is an acute phase reactant, it will be elevated due to the underlying inflammatory condition. Therefore, a normal (or even elevated) level can occur in over 57% of cases. A low level, however, is more consistent with the consumptive process of DIC.
- A rapidly declining platelet count
- High levels of fibrin degradation products, including D-dimer, are found owing to the intense fibrinolytic activity stimulated by the presence of fibrin in the circulation.
- The peripheral blood smear may show fragmented red blood cells (known as schistocytes) due to shear stress from thrombi. However, this finding is neither sensitive nor specific for DIC
A diagnostic algorithm has been proposed by the International Society of Thrombosis and Haemostasis. This algorithm appears to be 91% sensitive and 97% specific for the diagnosis of overt DIC. A score of 5 or higher is compatible with DIC and it is recommended that the score is repeated daily, while a score below 5 is suggestive but not affirmative for DIC and it is recommended that it is repeated only occasionally: It has been recommended that a scoring system be used in the diagnosis and management of DIC in terms of improving outcome.
- Presence of an underlying disorder known to be associated with DIC (no=0, yes=2)
- Global coagulation results
- Platelet count (>100k = 0, <100 = 1, <50 = 2)
- Fibrin degradation products such as D-Dimer (no increase = 0, moderate increase = 2, strong increase = 3)
- Prolonged prothrombin time (3 sec = 1, >6 sec = 2)
- Fibrinogen level (> 1.0g/L = 0; < 1.0g/L = 1)
There are several treatments available for factor VII deficiency; they all replace deficient FVII.
1. Recombinant FVIIa concentrate (rFVIIa) is a recombinant treatment that is highly effective and has no risk of fluid overload or viral disease. It may be the optimal therapy.
2. Plasma derived Factor VII concentrate (pdFVII) : This treatment is suitable for surgery but can lead to thrombosis. It is virus attenuated.
3. Prothrombin complex concentrate (PCC) containing factor VII: this treatment is suitable for surgery, but has a risk of thrombosis. It is virus attenuated.
4. Fresh frozen plasma (FFP): This is relatively inexpensive and readily available. While effective this treatment carries a risk of blood-borne viruses and fluid overload.
The first element of treatment is usually to discontinue the offending drug, although there have been reports describing how the eruption evolved little after it had established in spite of continuing the medication. Vitamin K1 can be used to reverse the effects of warfarin, and heparin or its low molecular weight heparin (LMWH) can be used in an attempt to prevent further clotting. None of these suggested therapies have been studied in clinical trials.
Heparin and LMWH act by a different mechanism than warfarin, so these drugs can also be used to prevent clotting during the first few days of warfarin therapy and thus prevent warfarin necrosis (this is called 'bridging').
Based on the assumption that low levels of protein C are involved in the underlying mechanism, common treatments in this setting include fresh frozen plasma or pure activated protein C.
Since the clot-promoting effects of starting administration of 4-hydroxycoumarins are transitory, patients with protein C deficiency or previous warfarin necrosis can still be restarted on these drugs if appropriate measures are taken. These include gradual increase starting from low doses and supplemental administration of protein C (pure or from fresh frozen plasma).
The necrotic skin areas are treated as in other conditions, sometimes healing spontaneously with or without scarring, sometimes going on to require surgical debridement or skin grafting.
In general, the indications for anticoagulation during pregnancy are the same as the general population. This includes (but is not limited to) a recent history of deep venous thrombosis (DVT) or pulmonary embolism, a metallic prosthetic heart valve, and atrial fibrillation in the setting of structural heart disease.
In addition to these indications, anticoagulation may be of benefit in individuals with lupus erythematosus, individuals who have a history of DVT or PE associated with a previous pregnancy, and even with individuals with a history of coagulation factor deficiencies and DVT not associated with a previous pregnancy.
In pregnant women with a history of recurrent miscarriage, anticoagulation seems to increase the live birth rate among those with antiphospholipid syndrome and perhaps those with congenital thrombophilia but not in those with unexplained recurrent miscarriage.
For patients with vWD type 1 and vWD type 2A, desmopressin is available as different preparations, recommended for use in cases of minor trauma, or in preparation for dental or minor surgical procedures. Desmopressin stimulates the release of vWF from the Weibel-Palade bodies of endothelial cells, thereby increasing the levels of vWF (as well as coagulant factor VIII) three- to five-fold. Desmopressin is also available as a preparation for intranasal administration (Stimate) and as a preparation for intravenous administration. Recently, the FDA has approved the use of Baxalta’s Vonvendi. This is the first recombinant form of vWF. The effectiveness of this treatment is different than desmopressin because it only contains vWF, not vWF with the addition of FVIII. This treatment is only recommended for use by individuals who are 18 years of age or older.
Desmopressin is contraindicated in vWD type 2b because of the risk of aggravated thrombocytopenia and thrombotic complications. Desmopressin is probably not effective in vWD type 2M and is rarely effective in vWD type 2N. It is totally ineffective in vWD type 3.
For women with heavy menstrual bleeding, estrogen-containing oral contraceptive medications are effective in reducing the frequency and duration of the menstrual periods. Estrogen and progesterone compounds available for use in the correction of menorrhagia are ethinylestradiol and levonorgestrel (Levona, Nordette, Lutera, Trivora). Administration of ethinylestradiol diminishes the secretion of luteinizing hormone and follicle-stimulating hormone from the pituitary, leading to stabilization of the endometrial surface of the uterus.
Desmopressin is a synthetic analog of the natural antidiuretic hormone vasopressin. Its overuse can lead to water retention and dilutional hyponatremia with consequent convulsion.
For patients with vWD scheduled for surgery and cases of vWD disease complicated by clinically significant hemorrhage, human-derived medium purity factor VIII concentrates, which also contain von Willebrand factors, are available for prophylaxis and treatment. Humate P, Alphanate, Wilate and Koate HP are commercially available for prophylaxis and treatment of vWD. Monoclonally purified factor VIII concentrates and recombinant factor VIII concentrates contain insignificant quantity of vWF, so are not clinically useful.
Development of alloantibodies occurs in 10-15% of patients receiving human-derived medium-purity factor VIII concentrates and the risk of allergic reactions including anaphylaxis must be considered when administering these preparations. Administration of the latter is also associated with increased risk of venous thromboembolic complications.
Blood transfusions are given as needed to correct anemia and hypotension secondary to hypovolemia. Infusion of platelet concentrates is recommended for correction of hemorrhage associated with platelet-type vWD.
The antifibrinolytic agents epsilon amino caproic acid and tranexamic acid are useful adjuncts in the management of vWD complicated by clinical hemorrhage. The use topical thrombin JMI and topical Tisseel VH are effective adjuncts for correction of hemorrhage from wounds.
The condition is diagnosed by blood tests in the laboratory when it is noted that special blood clotting test are abnormal. Specifically prothrombin time (PT) or activated partial thromboplastin time(aPTT) are prolonged. The diagnosis is confirmed by an assay detecting very low or absent FXII levels.
The FXII (F12) gene is found on chromosome 5q33-qter.
In hereditary angioedema type III an increased activity of factor XII has been described.
Anti-cardiolipin antibodies can be detected using an enzyme-linked immunosorbent assay (ELISA) immunological test, which screens for the presence of βglycoprotein 1 dependent anticardiolipin antibodies (ACA).
A low platelet count and positivity for antibodies against β-glycoprotein 1 or phosphatidylserine may also be observed in a positive diagnosis.
There are no laboratory tests used to diagnose RVT.
Observing the patient's symptoms, medical history and imaging remain the fundamental source for diagnosing RVT. Imaging is used to detect the presence of a blood clot. In an abnormal kidney with RVT, a blood clot is present in the renal vein. In cases where the renal vein is suddenly and/or fully blocked, the kidneys will enlarge, reaching its maximum size within a week. An ultrasound imaging can be used to observe and track the size of the kidneys in RVT patients. Ultrasound is not efficient for use in detecting blood flow in the renal veins and artery. Instead a color doppler ultrasound may be used to detect renal blood flow. It is most commonly used to detect RVT in patients who have undergone renal transplantation. CT angiography is currently the top choice in diagnosing RVT. It is non-invasive, relatively cheap and fast with high accuracy. CT scanning can be used to detect renal enlargement, renal tumors, blood flow and other renal pathologies. An alternative is magnetic resonance angiography or MRA. It is non-invasive, fast and avoids radiation (unlike a CT scan) but it is relatively expensive. MRA produces detailed images of the renal blood flow, vesicle walls, the kidneys and any surrounding tissue. An inferior venocavography with selective venography can be used to rule out the diagnoses of RVT.
The risk of VTE is increased in pregnancy by about five times because of a more hypercoagulable state, a likely adaptation against fatal postpartum hemorrhage. Additionally, pregnant women with genetic risk factors are subject to a roughly three to 30 times increased risk for VTE. Preventative treatments for pregnancy-related VTE in hypercoagulable women were suggested by the ACCP. Homozygous carriers of factor V Leiden or prothrombin G20210A with a family history of VTE were suggested for antepartum LMWH and either LMWH or a vitamin K antagonist (VKA) for the six weeks following childbirth. Those with another thrombophilia and a family history but no previous VTE were suggested for watchful waiting during pregnancy and LMWH or—for those without protein C or S deficiency—a VKA. Homozygous carriers of factor V Leiden or prothrombin G20210A with no personal or family history of VTE were suggested for watchful waiting during pregnancy and LMWH or a VKA for six weeks after childbirth. Those with another thrombophilia but no family or personal history of VTE were suggested for watchful waiting only. Warfarin, a common VKA, can cause harm to the fetus and is not used for VTE prevention during pregnancy.