Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Paracetamol may be quantified in blood, plasma, or urine as a diagnostic tool in clinical poisoning situations or to aid in the medicolegal investigation of suspicious deaths. The concentration in serum after a typical dose of paracetamol usually peaks below 30 mg/l, which equals 200 µmol/L. Levels of 30–300 mg/L (200–2000 µmol/L) are often observed in overdose patients. Postmortem blood levels have ranged from 50–400 mg/L in persons dying due to acute overdosage. Automated colorimetric techniques, gas chromatography and liquid chromatography are currently in use for the laboratory analysis of the drug in physiological specimens.
Propofol infusion syndrome (PRIS) is a rare syndrome which affects patients undergoing long-term treatment with high doses of the anaesthetic and sedative drug propofol. It can lead to cardiac failure, rhabdomyolysis, metabolic acidosis, and kidney failure, and is often fatal. High blood potassium, high blood triglycerides, and liver enlargement, proposed to be caused by either "a direct mitochondrial respiratory chain inhibition or impaired mitochondrial fatty acid metabolism" are also key features. It is associated with high doses and long-term use of propofol (> 4 mg/kg/h for more than 24 hours). It occurs more commonly in children, and critically ill patients receiving catecholamines and glucocorticoids are at high risk. Treatment is supportive. Early recognition of the syndrome and discontinuation of the propofol infusion reduces morbidity and mortality.
A person's history of taking paracetamol is somewhat accurate for the diagnosis. The most effective way to diagnose poisoning is by obtaining a blood paracetamol level. A drug nomogram developed in 1975, called the Rumack-Matthew nomogram, estimates the risk of toxicity based on the serum concentration of paracetamol at a given number of hours after ingestion. To determine the risk of potential hepatotoxicity, the paracetamol level is traced along the nomogram. Use of a timed serum paracetamol level plotted on the nomogram appears to be the best marker indicating the potential for liver injury. A paracetamol level drawn in the first four hours after ingestion may underestimate the amount in the system because paracetamol may still be in the process of being absorbed from the gastrointestinal tract. Therefore, a serum level taken before 4 hours is not recommended.
Clinical or biochemical evidence of liver toxicity may develop in one to four days, although, in severe cases, it may be evident in 12 hours. Right-upper-quadrant tenderness may be present and can aid in diagnosis. Laboratory studies may show evidence of liver necrosis with elevated AST, ALT, bilirubin, and prolonged coagulation times, particularly an elevated prothrombin time. After paracetamol overdose, when AST and ALT exceed 1000 IU/L, paracetamol-induced hepatotoxicity can be diagnosed. In some cases, the AST and ALT levels can exceed 10,000 IU/L.
Diagnostic methods for hypertensive encephalopathy include physical examination, blood pressure measurement, blood sampling, ECG, EEG, chest X-ray, urinalysis, arterial blood gas analysis, and imaging of the head (CAT scan and/or MRI). Since decreasing the blood pressure is essential, anti-hypertensive medication is administered without awaiting the results of the laboratory tests. Electroencephalographic examination detects the absence of alpha waves, signifying impaired consciousness. In people with visual disturbances, slow waves are detected in the occipital areas.
When Budd–Chiari syndrome is suspected, measurements are made of liver enzyme levels and other organ markers (creatinine, urea, electrolytes, LDH).
Budd–Chiari syndrome is most commonly diagnosed using ultrasound studies of the abdomen and retrograde angiography. Ultrasound may show obliteration of hepatic veins, thrombosis or stenosis, spiderweb vessels, large collateral vessels, or a hyperechoic cord replacing a normal vein. Computed tomography (CT) or magnetic resonance imaging (MRI) is sometimes employed although these methods are generally not as sensitive. Liver biopsy is nonspecific but sometimes necessary to differentiate between Budd–Chiari syndrome and other causes of hepatomegaly and ascites, such as galactosemia or Reye's syndrome.
Several studies have attempted to predict the survival of patients with Budd–Chiari syndrome. In general, nearly 2/3 of patients with Budd–Chiari are alive at 10 years. Important negative prognostic indicators include ascites, encephalopathy, elevated Child-Pugh scores, elevated prothrombin time, and altered serum levels of various substances (sodium, creatinine, albumin, and bilirubin). Survival is also highly dependent on the underlying cause of the Budd–Chiari syndrome. For example, a patient with an underlying myeloproliferative disorder may progress to acute leukemia, independently of Budd–Chiari syndrome.
Definitions vary, but currently it is defined as one continuous, unremitting seizure lasting longer than five minutes, or recurrent seizures without regaining consciousness between seizures for greater than five minutes. Previous definitions used a 30-minute time limit.
NCSE is believed to be under-diagnosed.
Transcutaneous delivery systems, including iontophoretic systems, are available. These are popular for administration of opioids such as fentanyl, or local anesthetics such as lidocaine. Iontocaine is one example of such a system.
Patient Controlled Intranasal Analgesia (PCINA or Nasal PCA) refers to PCA devices in a Nasal spray form with inbuilt features to control the number of sprays that can be delivered in a fixed time period.
Urine and serum show raised levels of porphobilinogen.
Assay the red blood cells for the level of porphobilinogen deaminase.
Various investigations aid the diagnosis.
- ACTH (cosyntropin) stimulation test
- Cortisol level (to assess the level of glucocorticoids)
- Fasting blood sugar
- Serum potassium (to assess the level of mineralocorticoids)
- Serum sodium
An examination reveals massive fluid retention and generalized swelling. Abnormal sounds are heard when listening to the heart and lungs with a stethoscope. Blood pressure may be high. The patient may have signs of malnutrition.
A urinalysis reveals large amounts of protein and the presence of fat in the urine. Total protein in the blood may be low. The disorder can be screened during pregnancy by finding elevated levels of alpha-fetoprotein on a routine sampling of amniotic fluid. Genetic tests should be used to confirm the diagnosis, if the screening test is positive.
CNF is one of the Finnish heritage diseases. By use of positional cloning strategies, Kestila et al. isolated the gene responsible for NPHS1. Mutations in Finnish patients with NPHS1 were found in this gene, which they termed nephrin. The most common Finnish mutation was a deletion of 2 nucleotides in exon 2 (602716.0001), resulting in a frameshift and a truncated protein. The predicted nephrin protein belongs to the immunoglobulin family of cell adhesion molecules and is specifically expressed in renal glomeruli. It was also observed that, in most cases, alleles typically found on CNF chromosomes of Finnish families were also found on CNF chromosomes of non-Finnish families from North America and Europe.
Frequent infections may occur over the course of the disease.
Between 10 and 30% of people who have status epilepticus die within 30 days. The great majority of these people have an underlying brain condition causing their status seizure such as brain tumor, brain infection, brain trauma, or stroke. However, people with diagnosed epilepsy who have a status seizure also have an increased risk of death if their condition is not stabilized quickly, their medication and sleep regimen adapted and adhered to, and stress and other stimulant (seizure trigger) levels controlled.
However, with optimal neurological care, adherence to the medication regimen, and a good prognosis (no other underlying uncontrolled brain or other organic disease), the person—even people who have been diagnosed with epilepsy—in otherwise good health can survive with minimal or no brain damage, and can decrease risk of death and even avoid future seizures.
Adrenal crisis is triggered by physiological stress (such as trauma). Activities that have an elevated risk of trauma are best avoided. Treatment must be given within two hours of trauma and consequently it is advisable to carry injectable hydrocortisone in remote areas.
Congenital nephrotic syndrome can be successfully controlled with early diagnosis and aggressive treatment including albumin infusions, nephrectomy, medications and ultimately a kidney transplant. Most children live fairly normal life post-transplant but will spend significant time hospitalised pre-transplant and have numerous surgeries to facilitate treatment.
Due to the protein (albumin) losses many patients have reduced muscle tone and may experience delays in certain physical milestones such as sitting, crawling and walking. Similarly many patients experience growth delays due to protein loss. Delays vary from mild to significant but most patients experience growth spurts once they receive their transplanted kidney. Physical therapy may be useful for the child to strengthen muscle tone.
Undiagnosed cases are often fatal in the first year due to blood clots, infections or other complications.
The history, physical exam, and laboratory testing are required to determine the underlying cause of hyponatremia. A blood test demonstrating a serum sodium less than 135 mmol/L is diagnostic for hyponatremia. The history and physical exam are necessary to help determine if the patient is hypovolemic, euvolemic, or hypervolemic, which has important implications in determining the underlying cause. An assessment is also made to determine if the patient is experiencing symptoms from their hyponatremia. These include assessments of alertness, concentration, and orientation.
False hyponatremia, also known as spurious, pseudo, hypertonic, or artifactual hyponatremia is when the lab tests read low sodium levels but there is no hypotonicity. In hypertonic hyponatremia, resorption of water by molecules such as glucose (hyperglycemia or diabetes) or mannitol (hypertonic infusion) occurs. In isotonic hyponatremia a measurement error due to high blood triglyceride level (most common) or paraproteinemia occurs. It occurs when using techniques that measure the amount of sodium in a specified volume of serum/plasma, or that dilute the sample before analysis.
The initial aim of treatment in hypertensive crises is to rapidly lower the diastolic pressure to about 100 to 105 mmHg; this goal should be achieved within two to six hours, with the maximum initial fall in BP not exceeding 25 percent of the presenting value. This level of BP control will allow gradual healing of the necrotizing vascular lesions. More aggressive hypotensive therapy is both unnecessary and may reduce the blood pressure below the autoregulatory range, possibly leading to ischemic events (such as stroke or coronary disease).
Once the BP is controlled, the person should be switched to medication by mouth, with the diastolic pressure being gradually reduced to 85 to 90 mmHg over two to three months. The initial reduction to a diastolic pressure of approximately 100 mmHg is often associated with a modest worsening of renal function; this change, however, is typically transient as the vascular disease tends to resolve and renal perfusion improves over one to three months. Antihypertensive therapy should not be withheld in this setting unless there has been an excessive reduction in BP. A change in medication, however, is indicated if the decline in renal function is temporally related to therapy with an angiotensin (ACE) converting enzyme inhibitor or angiotensin II receptor blocker, which can interfere with renal autoregulation and produce acute renal failure in patients with bilateral renal artery stenosis. (See "Renal effects of ACE inhibitors in hypertension".)
Several parenteral antihypertensive agents are most often used in the initial treatment of malignant hypertension.
- Nitroprusside – an arteriolar and venous dilator, given as an intravenous infusion. Nitroprusside acts within seconds and has a duration of action of only two to five minutes. Thus, hypotension can be easily reversed by temporarily discontinuing the infusion, providing an advantage over the drugs listed below. However, the potential for cyanide toxicity limits the prolonged use of nitroprusside, particularly in patients with renal insufficiency.
- Nicardipine – an arteriolar dilator, given as an intravenous infusion.
- Clevidipine – a short-acting dihydropyridine calcium channel blocker. It reduces blood pressure without affecting cardiac filling pressures or causing reflex tachycardia.
- Labetalol – an alpha- and beta-adrenergic blocker, given as an intravenous bolus or infusion. Bolus followed by infusion.
- Fenoldopam – a peripheral dopamine-1 receptor agonist, given as an intravenous infusion.
- Oral agents — A slower onset of action and an inability to control the degree of BP reduction has limited the use of oral antihypertensive agents in the therapy of hypertensive crises. They may, however, be useful when there is no rapid access to the parenteral medications described above. Both sublingual nifedipine and sublingual captopril can substantially lower the BP within 10 to 30 minutes in many patients. A more rapid response is seen when liquid nifedipine is swallowed.
The major risk with oral agents is ischemic symptoms (e.g., angina pectoris, myocardial infarction, or stroke) due to an excessive and uncontrolled hypotensive response. Thus, their use should generally be avoided in the treatment of hypertensive crises if more controllable drugs are available.
The gold standard for investigating and quantifying insulin resistance is the "hyperinsulinemic euglycemic clamp," so-called because it measures the amount of glucose necessary to compensate for an increased insulin level without causing hypoglycemia. It is a type of glucose clamp technique. The test rarely is performed in clinical care, but is used in medical research, for example, to assess the effects of different medications. The rate of glucose infusion commonly is referred to in diabetes literature as the GINF value.
The procedure takes about two hours. Through a peripheral vein, insulin is infused at 10–120 mU per m per minute. In order to compensate for the insulin infusion, glucose 20% is infused to maintain blood sugar levels between 5 and 5.5 mmol/L. The rate of glucose infusion is determined by checking the blood sugar levels every five to ten minutes.
The rate of glucose infusion during the last thirty minutes of the test determines insulin sensitivity. If high levels (7.5 mg/min or higher) are required, the patient is insulin-sensitive. Very low levels (4.0 mg/min or lower) indicate that the body is resistant to insulin action. Levels between 4.0 and 7.5 mg/min are not definitive, and suggest "impaired glucose tolerance," an early sign of insulin resistance.
This basic technique may be enhanced significantly by the use of glucose tracers. Glucose may be labeled with either stable or radioactive atoms. Commonly used tracers are 3-H glucose (radioactive), 6,6 H-glucose (stable) and 1-C Glucose (stable). Prior to beginning the hyperinsulinemic period, a 3h tracer infusion enables one to determine the basal rate of glucose production. During the clamp, the plasma tracer concentrations enable the calculation of whole-body insulin-stimulated glucose metabolism, as well as the production of glucose by the body (i.e., endogenous glucose production).
A diagnosis of TTP is based on the clinical symptoms with the concomitant presence of thrombocytopenia (platelet count below 100×10/L) and microangiopathic hemolytic anemia with schistocytes on the blood smear, a negative direct antiglobulin test (coombs test), elevated levels of hemolysis markers (such as total bilirubin, LDH, free hemoglobin and an unmeasurable haptoglobin), after exclusion of any other apparent cause.
USS can present similar to the following diseases which have to be excluded: fulminant infections, disseminated intravascular coagulation, autoimmune hemolytic anemia, Evans syndrome, the typical and atypical form of hemolytic uremic syndrome (HUS), HELLP (hemolysis, elevated liver enzymes, low platelets) syndrome, pre-eclampsia, heparin-induced thrombocytopenia (HIT), cancer that is often accompanied with metastasis, kidney injury, antiphospholipid antibody syndrome and side effects from hematopoietic stem cell transplantation.
Of note is that pregnancy associated affections like pre-eclampsia, eclampsia and HELLP syndrome can overlap in their presentation as pregnancy can trigger TTP episodes.
Patients with fulminant infections, disseminated intravascular coagulation, HELLP syndrome, pancreatitis, liver disease and other active inflammatory conditions may have reduced ADAMTS13 activity but almost never a relevant severe ADAMTS13 deficiency <10% of the normal.
A severe ADAMTS13 deficiency below 5% or <10% of the normal (depending on the definitions) is highly specific for the diagnosis of TTP. ADAMTS13 activity assays are based on the direct or indirect measurement of VWF-cleavage products. Its activity should be measured in blood samples taken before therapy has started, to prevent false high ADAMTS13 activity. If a severe ADAMTS13 deficiency is present an ADAMTS13 inhibitor assay is needed to distinguish between the acquired, autoantibody-mediated and the congenital form of TTP (USS). The presence of antibodies can be tested by ELISA or functional inhibitor assays. The level of ADAMTS13 inhibitor may be fluctuating over the course of disease and depends on free circulatory antibodies, therefore an onetime negative test result does not always exclude the presence of ADAMTS13 inhibitors and thereby an autoimmune origin of TTP. A severe ADAMTS13 deficiency in the absence of an inhibitor, confirmed on a second time point in a healthy episode of a possible USS patient, usually sets the trigger to perform a molecular analysis of the "ADAMTS13" gene to confirm a mutation. In unclear cases a plasma infusion trial can be done, showing an USS in the absence of anti-ADAMTS13-antibodies a full recovery of infused plasma-ADAMTS13 activity as well as a plasma half-life of infused ADAMTS13 activity of 2–4 days. A deficiency of ADAMTS13 activity in first-degree relatives is also a very strong indicator for an Upshaw-Schulman Syndrome.
Another measure of insulin resistance is the modified insulin suppression test developed by Gerald Reaven at Stanford University. The test correlates well with the euglycemic clamp, with less operator-dependent error. This test has been used to advance the large body of research relating to the metabolic syndrome.
Patients initially receive 25 μg of octreotide (Sandostatin) in 5 mL of normal saline over 3 to 5 minutes via intravenous infusion (IV) as an initial bolus, and then, are infused continuously with an intravenous infusion of somatostatin (0.27 μg/m/min) to suppress endogenous insulin and glucose secretion. Next, insulin and 20% glucose are infused at rates of 32 and 267 mg/m/min, respectively. Blood glucose is checked at zero, 30, 60, 90, and 120 minutes, and thereafter, every 10 minutes for the last half-hour of the test. These last four values are averaged to determine the steady-state plasma glucose level (SSPG). Subjects with an SSPG greater than 150 mg/dL are considered to be insulin-resistant.
The differential diagnosis of congenital hyperinsulinism is consistent with PMM2-CDG, as well as several syndromes. Among other DDx we find the following that are listed:
- MPI-CDG
- Beckwith-Wiedemann syndrome
- Sotos syndrome
- Usher 1 syndromes
There are differenct types of congenital hyperinsulinism as "diffuse and focal" indicated below:
In a study of patients receiving oxaliplatin treatment, only 4 percent of those also receiving intravenous calcium and magnesium (ca/mg) before and after each oxaliplatin dose had to discontinue treatment due to neurotoxicity, compared to 33 percent who were receiving intravenous placebo; onset of neuropathy was also significantly delayed in the ca/mg patients, and only 22 percent of the ca/mg patients had long-term CIPN of grade 2 or worse compared with 41 percent of those on placebo. Overall, trials of ca/mg infusion suggest there are no serious harmful side effects and it may be an effective preventative therapy — the number of patients so far studied is small, however, and confident conclusions cannot be drawn.
As possible preventative interventions, the American National Cancer Institute Symptom Management and Health-related Quality of Life Steering Committee recommends continued investigation of several dietary supplements, including glutathione, and intravenous calcium and magnesium, which have shown early promise in limited human trials; acetyl-L-carnitine, which was effective in animal models and on diabetes and HIV patients; and the anti-oxidant alpha-lipoic acid.