Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment is based
on the stage of the disease. Stage 1 does not
require treatment and
should be observed. 4
Neovascularization
(stage 2) responds well
to laser ablation or
cryotherapy.2,4 Eyes
with retinal detachments (stages
3 through 5) require surgery, with
earlier stages requiring scleral
buckles and later stages ultimately
needing vitrectomy. 2,4
More recently, the efficacy of
anti-VEGF intravitreal injections
has been studied. In one study,
these injections, as an in adjunct
with laser, helped early stages
achieve stabilization, but further
investigation is needed.6
The diagnosis of CMV retinitis can be done via the following:
- Ophthalmic screening frequency is based on CD4 count,(CD4 < 50 cells/mL, 0- 35% possibility of CMV retinitis)
- BUN
- CD8+ T-lymphocyte count
- CMV DNA capture ( polymerase chain reaction (PCR) test)
- DNA PCR ( ocular fluids)
- Viral load
- Complete blood count
Macular telangiectasia type 1 must be differentiated from secondary telangiectasis caused by retinal vascular diseases such as retinal venous occlusions, diabetic retinopathy, radiation retinopathy, sickle cell maculopathy, inflammatory retinopathy/Irvine–Gass syndrome, ocular ischemic syndrome/carotid artery obstruction, hypertensive retinopathy, polycythemia vera retinopathy, and localized retinal capillary hemangioma. In addition, Macular telangiectasia type 1 should be clearly differentiated from dilated perifoveal capillaries with evidence of vitreous cellular infiltration secondary to acquired inflammatory disease or tapetoretinal dystrophy. Less commonly, macular telangiectasis has been described in association with fascioscapulohumeral muscular dystrophy, incontinentia pigmenti, and familial exudative vitreoretinopathy with posterior pole involvement.
Macular telangiectasia type 2 is commonly under-diagnosed. The findings may appear very similar to diabetic retinopathy, and many cases ave been incorrectly ascribed to diabetic retinopathy or age-related macular degeneration. Recognition of this condition can save an affected patient from unnecessarily undergoing extensive medical testing and/or treatment. MacTel should be considered in cases of mild paramacular dot and blot hemorrhages and in cases of macular and paramacular RPE hyperplasia where no other cause can be identified.
This may be present in conditions causing traction on the retina especially at the macula. This may occur in:
a) The vitreomacular traction syndrome; b) Proliferative diabetic retinopathy with vitreoretinal traction; c) Atypical cases of impending macular hole.
FEVR is, as its name suggests,
familial and can be inherited in an
autosomal dominant, autosomal
recessive or X-linked recessive pattern.1-3 It is caused by mutations in
FZD4, LRP5, TSPAN12 and NDP
genes, which impact the wingless/
integrated (Wnt) receptor signaling
pathway. 3 Disruption of this path
way leads to abnormalities of vascu-
lar growth in the peripheral retina. 2,3
It is typically bilateral, but asymmetric, with varying degrees of
progression over the individual’s
lifetime. Age of onset varies, and
visual outcome can be strongly
influenced by this factor. Patients
with onset before age three have a
more guarded long-term prognosis
whereas those with later onset are
more likely to have asymmetric
presentation with deterioration of
vision in one eye only. 2-3 However,
because FEVR is a lifelong disease,
these patients are at risk even as
adults.2 Ocular findings and useful
vision typically remain stable if the
patient does not have deterioration
before age 20.2,4 Due to the variability and unpredictability of the
disease course, patients with FEVR
should be followed throughout
their lifetime.
Clinical presentation can vary
greatly. In mild variations, patients
may experience peripheral vascular
changes, such as peripheral avascular zone, vitreoretinal adhesions,
arteriovenous anastomoses and a
V-shaped area of retinochoroidal
degeneration. 4 Severe forms may
present with neovascularization,
subretinal and intraretinal hemorrhages and exudation. 4 Neovascularization is a poor prognostic
indicator and can lead to retinal
folds, macular ectopia and tractional retinal detachment. 2,4 Widefield FA has been crucial in
helping to understand this disease,
as well as helping to confirm the
diagnosis. An abrupt cessation
of the retinal capillary network
in a scalloped edge posterior to
fibrovascular proliferations can
be made using FA.2,3,5 Patients can
also show delayed transit filling on
FA as well as delayed/patchy choroidal filling, bulbous vascular terminals, capillary dropout, venous/venous shunting and abnormal
branching patterns. 2,3,5 The staging of FEVR is similar
to that of retinopathy of prematurity. The first two stages involve an
avascular retinal periphery with or
without extraretinal vascularization (stage 1 and 2, respectively). 4 Stages three through five delineate
levels of retinal detachment; stage 3
is subtotal without foveal involvement, stage 4 is subtotal with foveal
involvement and stage 5 is a total
detachment, open or closed funnel.4
Because there was neovascularization in the absence of retinal detachment, our patient was
considered to have
stage 2.
Although MacTel is uncommon, its prevalence is probably higher than most physicians believe. The early findings are subtle, so the diagnosis is likely often missed by optometrists and general ophthalmologists. MacTel was detected in 0.1% of subjects in the Beaver Dam study population over age 45 years, but this is probably an underestimate because identification was made based only on color photographs.
No major new biomicroscopic features of MacTel have been identified since the early work of Gass and colleagues.
The advent of optical coherence tomography (OCT) has allowed better characterization of the nature of the inner and outer lamellar cavities. Loss of central masking seen on autofluorescence studies, apparently due to loss of luteal pigment, is now recognized as probably the earliest and most sensitive and specific MacTel abnormality.
The key fundus findings in macular telangiectasia type 2 involve retinal crystalline—fine, refractile deposits in the superficial retinal layers—may be seen within the affected area.a focal area of diminished retinal transparency (i.e. "greying") and/or small retinal hemorrhages just temporal to the fovea. Dilated capillaries may also be noted within this area, and while this is often difficult to visualize ophthalmoscopically, the abnormal capillary pattern is readily identifiable with fluorescein angiography.
Areas of focal RPE hyperplasia, i.e.pigment plaques, often develop in the paramacular region as a response to these abnormal vessels. Other signs of macular telangiectasia type 2 include right angle venules, representing an unusual alteration of the vasculature in the paramacular area, with vessels taking an abrupt turn toward the macula as if being dragged.
Diagnosis of MacTel type 2 may be aided by the use of advanced imaging techniques such as fluorescein angiography, fundus autofluorescence, and OCT. These can help to identify the abnormal vessels, pigment plaques, retinal crystals, foveal atrophy and intraretinal cavities associated with this disorder.
Fluorescein angiography (FA) is helpful in identifying the anomalous vasculature, particularly in the early stages of Type 2 disease. Formerly, FA was essential in making a definitive diagnosis. However, the diagnosis can be established with less invasive imaging techniques such as OCT and fundus autofluorescence. Some clinicians argue that FA testing may be unnecessary when a diagnosis is apparent via less invasive means.
The natural history of macular telangiectasia suggests a slowly progressive disorder. A retrospective series of 20 patients over 10 to 21 years showed deterioration of vision in more than 84% of eyes, either due to intra-retinal edema and serous retinal detachment (Type 1) or pigmented RPE scar formation or neovascularisation (Type 2).
Retinoschisis involving the central part of the retina secondary to an optic disc pit was erroneously considered to be a serous retinal detachment until correctly described by Lincoff as retinoschisis. Significant visual loss may occur and following a period of observation for spontaneous resolution, treatment with temporal peripapillary laser photocoagulation followed by vitrectomy and gas injection followed by face-down positioning is very effective in treating this condition.
Predisposing factors for Postoperative PVR are preoperative PVR, aphakia, high levels of vitreous proteins, duration of retinal detachment before corrective surgery, the size of the retinal hole or tear, intra-ocular inflammation, vitreous hemorrhage, and trauma to the eye. An equation to calculate the patient's risk for acquiring PVR is:
1 is added if the risk factor is present and 0 if the risk factor is absent. A patient is at a high risk for developing PVR is the PVR score is >6.33.
Retinopathy is diagnosed by an ophthalmologist or an optometrist during eye examination. Stereoscopic fundus photography is the gold standard for the diagnosis of retinopathy. Dilated fundoscopy, or direct visualization of the fundus, has been shown to be effective as well.
Retinal detachment can be examined by fundus photography or ophthalmoscopy. Fundus photography generally needs a considerably larger instrument than the ophthalmoscope, but has the advantage of availing the image to be examined by a specialist at another location and/or time, as well as providing photo documentation for future reference. Modern fundus photographs generally recreate considerably larger areas of the fundus than what can be seen at any one time with handheld ophthalmoscopes.
Ultrasound has diagnostic accuracy similar to that of examination by an ophthalmologist. The recent meta-analysis shows the diagnostic accuracy of emergency department (ED) ocular ultrasonography is high. The sensitivity and specificity ranged from 97% to 100% and 83% to 100%. The typical feature of retinal detachment when viewed on ultrasound is "flying angel sign". It shows the detached retina moving with a fixed point under the B mode, linear probe 10 MHz.
Retinal examination with scleral depression is generally recommended for patients born before 30–32 weeks gestation, or 4–6 weeks of life, whichever is later. It is then repeated every 1–3 weeks until vascularization is complete (or until disease progression mandates treatment).
A minority of retinal detachments result from trauma, including blunt blows to the orbit, penetrating trauma, and concussions to the head. A retrospective Indian study of more than 500 cases of rhegmatogenous detachments found that 11% were due to trauma, and that gradual onset was the norm, with over 50% presenting more than one month after the inciting injury.
In terms of the treatment of cytomegalovirus retinitis, oral valganciclovir, intravenous ganciclovir, IV foscarnet, and IV cidofovir are all efficient in the treatment of this condition. Also intravitreal injections, an injection of medicine into the vitreous near the retina, of foscarnet in concomitance with oral valganciclovir can be used for treatment as well.
Often individuals with CMV retinitis will need surgery for either retinal detachment or intravitreal instillation of ganciclovir. Retinal detachment occurs in up to 29% of affected eyes, repair being most effective with endolaser and silicone oil endotamponade.Intravitreal ganciclovir implant has the benefit of less systemic toxicity. An adverse effect of this is retinal detachment (and vitreous hemorrhage), also there is no systemic beneficial effect for cytomegalovirus organ disease.
Almost all infants with ROP have a gestational age of 31 weeks or less (regardless of birth weight) or a birth weight of 1250 g (2.76 lbs) or less; these indications are generally used to decide whether a baby should be screened for ROP, but some centres, especially in developing countries extend birth weight screening criteria to 1500 g (3.3 lbs).
Any premature baby with severe illness in perinatal period (Respiratory distress syndrome, sepsis, blood transfusion, Intra ventricular haemorrhage, apnoeic episodes, etc.) may also be offered ROP screening.
Diabetic retinopathy is diagnosed entirely by recognizing abnormalities on retinal images taken by fundoscopy. Color fundus photography is mainly used for staging the disease. Fluorescein angiography is used to assess the extent of retinopathy that aids in treatment plan development. Optical coherence tomography (OCT) is used to determine the severity of edema and treatment response.
Because fundoscopic images are the main sources for diagnosis of diabetic retinopathy, manually analyzing those images can be time-consuming and unreliable, as the ability of detecting abnormalities varies by years of experience. Therefore, scientists have explored developing computer-aided diagnosis approaches to automate the process, which involves extracting information about the blood vessels and any abnormal patterns from the rest of the fundoscopic image and analyzing them.
In the UK, screening for diabetic retinopathy is part of the standard of care for people with diabetes. After one normal screening in people with diabetes, further screening is recommended every two years. Teleophthalmology has been employed in these programs.
Screening tools for contact granulomas are not currently available. Diagnosis of contact granulomas require visualization using laryngoscopy, and may require further biopsy for differential diagnosis. A combination of symptoms and lifestyle factors may be linked with the development of a contact granuloma, however symptoms vary greatly by individual. Some lifestyle factors that have been linked with elevated risk of development of contact granulomas include frequent use of the voice, especially when in loud environments, and concurrent use of the voice with alcohol consumption (increasing risk of gastroesophageal reflux symptoms). Contact granuloma may also arise after intubation, and so following intubation, patients should be monitored if voice symptoms arise. Symptoms may or may not include hoarse voice, described as "huskiness" by some patients, "aching" in the throat related to increased effort to produce voice, and the feeling of having a lump in one's throat when swallowing. It is also possible to have no such symptoms, especially if the granuloma is small. A patient presenting with such symptoms or risk factors should therefore be referred for further visualization. It is therefore recommended to obtain a diagnosis from a doctor.
Telemedicine programs are available that allow primary care clinics to take images using specially designed retinal imaging equipment which can then be shared electronically with specialists at other locations for review. In 2009, Community Health Center, Inc. implemented a telemedicine retinal screening program for low-income patients with diabetes as part of those patients annual visits at the Federally Qualified Health Center.
Various methods are used to diagnose contact granuloma which aid in differentiating it from other vocal fold pathology. Laryngoscopy can allow visualization of the suspected granuloma while also checking for signs of vocal abuse. Laryngoscopy, as well as an acoustic analysis of the voice, can help rule out vocal fold paresis as an underlying cause. Microscopic examination of the tissue can help determine that the lesion is benign rather than cancerous, as would be the case in contact granuloma. Other methods such as laryngeal electromyography and reflux testing can also be used to evaluate the function of the vocal folds and determine if laryngopharyngeal reflux is contributing to the pathology.
In 2005, steroids were investigated for the treatment of macular edema due to retinal blood vessel blockage such as CRVO and BRVO.
A 2014 Cochrane Systematic Review studied the effectiveness of two anti-VEGF treatments, ranibizumab and pegaptanib, on patients suffering from macular edema caused by CRVO. Participants on both treatment groups showed a reduction in macular edema symptoms over six months.
Another Cochrane Review examined the effectiveness and safety of two intravitreal steroid treatments, triamcinolone acetonide and dexamethasone, for patients with from CRVO-ME. The results from one trial showed that patients treated with triamcinolone acetonide were significantly more likely to show improvements in visual acuity than those in the control group, though outcome data was missing for a large proportion of the control group. The second trial showed that patients treated with dexamethasone implants did not show improvements in visual acuity, compared to patients in the control group.
Evidence also suggests that intravitreal injections and implantation of steroids inside the eye can result in improved visual outcomes for patients with chronic or refractory diabetic macular edema.
This ocular pathology was first described by Iwanoff in 1865, and it has been shown to occur in about 7% of the population. It can occur more frequently in the older population with postmortem studies showing it in 2% of those aged 50 years and 20% in those aged 75 years.
Surgeons can remove or peel the membrane through the sclera and improve vision by 2 or more Snellen lines. Usually the vitreous is replaced at the same time with clear (BSS) fluid, in a vitrectomy. Surgery is not usually recommended unless the distortions are severe enough to interfere with daily living, since there are the usual hazards of surgery, infections, and a possibility of retinal detachment. More common complications are high intraocular pressure, bleeding in the eye, and cataracts, which are the most frequent complication of vitrectomy surgery. Many patients will develop a cataract within the first few years after surgery. In fact, the visual distortions and diplopia created by cataracts may sometimes be confused with epiretinal membrane.
The treatment method used depends on the cause of the hemorrhage. In most cases, the patient is advised to rest with the head elevated 30–45°, and sometimes to put patches over the eyes to limit movement prior to treatment in order to allow the blood to settle. The patient is also advised to avoid taking medications that cause blood thinning (such as aspirin or similar medications).
The goal of the treatment is to fix the cause of the hemorrhage as quickly as possible. Retinal tears are closed by Laser treatment or cryotherapy, and detached retinas are reattached surgically.
Even after treatment, it can take months for the body to clear all of the blood from the vitreous. In cases of vitreous hemorrhage due to detached retina,long-standing vitreous hemorrhage with a duration of more than 2–3 months, or cases associated with rubeosis iridis or glaucoma, a vitrectomy may be necessary to remove the standing blood in the vitreous.
Diagnosis is confirmed histologically by tissue biopsy. Hematoxylin-eosin stain of biopsy slide will show features of Langerhans Cell e.g. distinct cell margin, pink granular cytoplasm. Presence of Birbeck granules on electron microscopy and immuno-cytochemical features e. g. CD1 positivity are more specific. Initially routine blood tests e.g. full blood count, liver function test, U&Es, bone profile are done to determine disease extent and rule out other causes. Radiology will show osteolytic bone lesions and damage to the lung. The latter may be evident in chest X-rays with micronodular and interstitial infiltrate in the mid and lower zone of lung, with sparing of the Costophrenic angle or honeycomb appearance in older lesions. MRI and CT may show infiltration in sella turcica. Assessment of endocrine function and bonemarrow biopsy are also performed when indicated.
- S-100 protein is expressed in a cytoplasmic pattern
- peanut agglutinin (PNA) is expressed on the cell surface and perinuclearly
- major histocompatibility (MHC) class II is expressed (because histiocytes are macrophages)
- CD1a
- langerin (CD207), a Langerhans Cell–restricted protein that induces the formation of Birbeck granules and is constitutively associated with them, is a highly specific marker.