Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
On chest X-ray and CT, pulmonary aspergillosis classically manifests as a halo sign, and, later, an air crescent sign.
In hematologic patients with invasive aspergillosis, the galactomannan test can make the diagnosis in a noninvasive way. False positive "Aspergillus" galactomannan tests have been found in patients on intravenous treatment with some antibiotics or fluids containing gluconate or citric acid such as some transfusion platelets, parenteral nutrition or PlasmaLyte.
On microscopy, "Aspergillus" species are reliably demonstrated by silver stains, e.g., Gridley stain or Gomori methenamine-silver. These give the fungal walls a gray-black colour. The hyphae of "Aspergillus" species range in diameter from 2.5 to 4.5 µm. They have septate hyphae, but these are not always apparent, and in such cases they may be mistaken for Zygomycota. "Aspergillus" hyphae tend to have dichotomous branching that is progressive and primarily at acute angles of about 45°.
The specific criteria for diagnosis of CPA are:
Chest X-rays showing one or more lung cavities. There may be a fungal ball present or not.
Symptoms lasting more than 3 months, usually including weight loss, fatigue, cough, coughing blood (haemoptysis) and breathlessness
A blood test or tissue fluid test positive for Aspergillus species
Aspergilloma
An aspergilloma is a fungal mass caused by a fungal infection with Aspergillus species that grows in either scarred lungs or in a pre-existing lung cavity, which may have been caused by a previous infection. Patients with a previous history of tuberculosis, sarcoidosis, cystic fibrosis or other lung disease are most susceptible to an aspergilloma. Aspergillomas may have no specific symptoms but in many patients there is some coughing up of blood called haemoptysis - this may be infrequent and in small quantity, but can be severe and then it requires urgent medical help.
Tests used to diagnose an aspergilloma may include:
- Chest X-ray
- Chest CT
- Sputum culture
- Bronchoscopy or bronchoscopy with lavage (BAL)
- Serum precipitins for aspergillus (blood test to detect antibodies to aspergillus)
Almost all aspergillomas are caused by "Aspergillus fumigatus". In diabetic patients it may be caused by "Aspergillus niger". It is very rarely caused by "Aspergillus flavus", "Aspergillus oryzae", "Aspergillus terreus" or "Aspergillus nidulans".
Culturing fungi from sputum is a supportive test in the diagnosis of ABPA, but is not 100% specific for ABPA as "A. fumigatus" is ubiquitous and commonly isolated from lung expectorant in other diseases. Nevertheless, between 40–60% of patients do have positive cultures depending on the number of samples taken.
Fungal pneumonia can be diagnosed in a number of ways. The simplest and cheapest method is to culture the fungus from a patient's respiratory fluids. However, such tests are not only insensitive but take time to develop which is a major drawback because studies have shown that slow diagnosis of fungal pneumonia is linked to high mortality. Microscopy is another method but is also slow and imprecise. Supplementing these classical methods is the detection of antigens. This technique is significantly faster but can be less sensitive and specific than the classical methods.
A molecular test based on quantitative PCR is also available from Myconostica. Relying on DNA detection, this is the most sensitive and specific test available for fungi but it is limited to detecting only pneumocystis jirovecii and aspergillus.
The first stage involves exposing the skin to Aspergillus fumigatus antigens; an immediate reaction is hallmark of ABPA. The test should be performed first by skin prick testing, and if negative followed with an intradermal injection. Overall sensitivity of the procedure is around 90%, though up to 40% of asthmatic patients without ABPA can still show some sensitivity to Aspergillus antigens (a phenomenon likely linked to a less severe form of ABPA termed severe asthma with fungal sensitization (SAFS)).
Serum blood tests are an important marker of disease severity, and are also useful for the primary diagnosis of ABPA. When serum IgE is normal (and patients are not being treated by glucocorticoid medications), ABPA is excluded as the cause of symptoms. A raised IgE increases suspicion, though there is no universally accepted cut-off value. Values can be stated in international units (IU/mL) or ng/mL, where 1 IU is equal to 2.4 ng/mL. Since studies began documenting IgE levels in ABPA during the 1970s, various cut-offs between 833–1000 IU/mL have been employed to both exclude ABPA and to warrant further serological testing. Current consensus is that a cut-off of 1000 IU/mL should be employed, as lower values are encountered in SAFS and asthmatic sensitization.
IgG antibody precipitin testing from serum is useful, as positive results are found in between 69–90% of patients, though also in 10% of asthmatics with and without SAFS. Therefore, it must be used in conjunction with other tests. Various forms exist, including enzyme-linked immunosorbent assay (ELISA) and fluorescent enzyme immunoassay (FEIA). Both are more sensitive than conventional counterimmunoelectrophoresis. IgG may not be entirely specific for ABPA, as high levels are also found in chronic pulmonary aspergillosis (CPA) alongside more severe radiological findings.
Until recently, peripheral eosinophilia (high eosinophil counts) was considered partly indicative of ABPA. More recent studies show that only 40% of ABPA sufferers present with eosinophilia, and hence a low eosinophil count does not necessary exclude ABPA; for example patients undergoing steroid therapy have lower eosinophil counts.
X-rays can be used to examine the lung tissue, however it can not be used to positively diagnose geotrichosis. X-rays may show cavitation that is located the walls of the lungs tissues. The lung tissue resemble the early signs of tuberculosis. The results of an x-ray examination of pulmonary geotrichosis presents smooth, dense patchy infiltrations and some cavities. Bronchial geotrichosis shows peribronchial thickening with fine mottling may be present on middle or basilar pulmonary fields. Bronchial geotrichosis usually present itself as non-specific diffuse peribronchical infiltration.
The current medical treatments for aggressive invasive aspergillosis include voriconazole and liposomal amphotericin B in combination with surgical debridement.
For the less aggressive allergic bronchopulmonary aspergillosis findings suggest the use of oral steroids for a prolonged period of time, preferably for 6–9 months in allergic aspergillosis of the lungs. Itraconazole is given with the steroids, as it is considered to have a "steroid sparing" effect, causing the steroids to be more effective, allowing a lower dose.,
Other drugs used, such as amphotericin B, caspofungin (in combination therapy only), flucytosine (in combination therapy only), or itraconazole,
are used to treat this fungal infection. However, a growing proportion of infections are resistant to the triazoles. "A. fumigatus", the most commonly infecting species, is intrinsically resistant to fluconazole.
The diagnoses of geotrichosis cannot be determined without using culture or microscopic measurements. The laboratory diagnosis of geotrichosis involves collected fungi samples areas of infections without contamination. Scraping of the mouth lesions and the ulcers can provide a sample of "G. candidum." Samples can also be collected from pus and mucus can be obtained from the feces. Sputum can be searched for the mucoid-like white flakes for further examination. Culturing the cylindrical barrel-shaped or elliptical fungi in considerable numbers in oral lesions is an indicator that a patient may have geotrichosis. Under the microscope the fungi appears yeast-like and septate branching hyphae that can be broken down into chains or individual arthrospores. Arthrospores appear rectangular with flat or rounded ends. Under the microscope the arthroconidia size range from 6-12μm x 3-6μm. Arthroconidia and coarse true hyphae can be observed can be observed under the microscope. Another identification method for "G. candidum" is selective isolation method. A selection isolation method based on the fungi tolerance to novobiocin and carbon dioxide can determine if "G. candidum" is the cause of illness.
Patients with single aspergillomas generally do well with surgery to remove the aspergilloma, and are best given pre-and post-operative antifungal drugs. Often, no treatment is necessary. However, if a patient coughs up blood (haemoptysis), treatment may be required (usually angiography and embolisation, surgery or taking tranexamic acid). Angiography (injection of dye into the blood vessels) may be used to find the site of bleeding which may be stopped by shooting tiny pellets into the bleeding vessel.
For chronic cavitary pulmonary aspergillosis and chronic fibrosing pulmonary aspergillosis, lifelong use of antifungal drugs is usual. Itraconazole and voriconazole are first and second-line anti fungal agents respectively. Posaconazole can be used as third-line agent, for patients who are intolerant of or developed resistance to the first and second-line agents. Regular chest X-rays, serological and mycological parameters as well as quality of life questionnaires are used to monitor treatment progress. It is important to monitor the blood levels of antifungals to ensure optimal dosing as individuals vary in their absorption levels of these drugs.
Fungal pneumonia can be treated with antifungal drugs and sometimes by surgical debridement.
The diagnosis of plastic bronchitis is confirmed by recovery of casts that have been coughed up or visualized during a bronchoscopy. There is no specific cytologic, pathologic or laboratory test that is diagnostic for casts due to lymphatic PB.
Simple chest roentenograms may reveal collapse due to airway obstruction. The contralateral lung may be hyperinflated. Casts can be visualized within the major airways using computerized axial tomography scans.
Heavy T2-weighted MRI, and, as appropriate, intranodal lymphangiogram and/or dynamic contrast-enhanced MR lymphangiography may be useful for identifying pathological lymphatic tissue and/or lymphatic flow.
As of tissue or discharge are generally unreliable, the diagnosis of mucormycosis tends to be established with a biopsy specimen of the involved tissue.
Bronchiectasis may be diagnosed clinically or on review of imaging. The British Thoracic Society recommends all non-cystic-fibrosis-related bronchiectasis be confirmed by CT. CT may reveal tree-in-bud abnormalities, dilated bronchi, and cysts with defined borders.
Other investigations typically performed at diagnosis include blood tests, sputum cultures, and sometimes tests for specific genetic disorders.
In most cases, the prognosis of mucormycosis is poor and has varied mortality rates depending on its form and severity. In the rhinocerebral form, the mortality rate is between 30% and 70%, whereas disseminated mucormycosis presents with the highest mortality rate in an otherwise healthy patient, with a mortality rate of up to 90%. Patients with AIDS have a mortality rate of almost 100%. Possible complications of mucormycosis include the partial loss of neurological function, blindness and clotting of brain or lung vessels.
In order to prevent bronchiectasis, children should be immunized against measles, pertussis, pneumonia, and other acute respiratory infections of childhood. While smoking has not been found to be a direct cause of bronchiectasis, it is certainly an irritant that all patients should avoid in order to prevent the development of infections (such as bronchitis) and further complications.
Treatments to slow down the progression of this chronic disease include keeping bronchial airways clear and secretions weakened through various forms of pneumotherapy. Aggressively treating bronchial infections with antibiotics to prevent the destructive cycle of infection, damage to bronchial tubes, and more infection is also standard treatment. Regular vaccination against pneumonia, influenza and pertussis are generally advised. A healthy body mass index and regular doctor visits may have beneficial effects on the prevention of progressing bronchiectasis. The presence of hypoxemia, hypercapnia, dyspnea level and radiographic extent can greatly affect the mortality rate from this disease.
Systemic mycoses due to opportunistic pathogens are infections of patients with immune deficiencies who would otherwise not be infected. Examples of immunocompromised conditions include AIDS, alteration of normal flora by antibiotics, immunosuppressive therapy, and metastatic cancer. Examples of opportunistic mycoses include Candidiasis, Cryptococcosis and Aspergillosis.
Keeping the skin clean and dry, as well as maintaining good hygiene, will help larger topical mycoses. Because fungal infections are contagious, it is important to wash after touching other people or animals. Sports clothing should also be washed after use.
Other than identifying and treating any underlying conditions in secondary livedo, idiopathic livedo reticularis may improve with warming the area.
Usually the sequestration is removed after birth via surgery. In most cases this surgery is safe and effective; the child will grow up to have normal lung function.
In a few instances, fetuses with sequestrations develop problematic fluid collections in the chest cavity. In these situations a Harrison catheter shunt can be used to drain the chest fluid into the amniotic fluid.
In rare instances where the fetus has a very large lesion, resuscitation after delivery can be dangerous. In these situations a specialized delivery for management of the airway compression can be planned called the EXIT procedure, or a fetal laser ablation procedure can be performed. During this minimally invasive fetal intervention, a small needle is inserted into the sequestration, and a laser fiber is targeted at the abnormal blood vessel going to the sequestration. The goal of the operation is to use laser energy to stop the blood flow to the sequestration, causing it to stop growing. Ideally, after the surgery, the sequestration steals less blood flow from the fetus, and the heart and lungs start growing more normally as the sequestration shrinks in size and the pleural effusion goes away.
The treatment for this is a wedge resection, segmentectomy, or lobectomy via a VATS procedure or thoracotomy.
Pulmonary sequestrations usually get their blood supply from the thoracic aorta.
Primary cutaneous aspergillosis is a rare skin condition most often occurring at the site of intravenous cannulas in immunosuppressed patients.
Radiologically, the lungs are overinflated and on bronchoscopy bronchomalacia is demonstrated.
Bronchopulmonary sequestration (BPS) is a rare congenital malformation of the lower respiratory tract.
It consists of a nonfunctioning mass of normal lung tissue that lacks normal communication with the tracheobronchial tree, and that receives its arterial blood supply from the systemic circulation.
BPS is estimated to comprise 0.15 to 6.4 percent of all congenital pulmonary malformations, making it an extremely rare disorder.
Sequestrations are classified anatomically.
Intralobar sequestration (ILS) in which the lesion is located within a normal lobe and lacks its own visceral pleura.
Extralobar sequestration (ELS) in which the mass is located outside the normal lung and has its own visceral pleura
The blood supply of 75% of pulmonary sequestrations is derived from the thoracic or abdominal aorta.
The remaining 25% of sequestrations receive their blood flow from the subclavian, intercostal, pulmonary, pericardiophrenic, innominate, internal mammary, celiac, splenic, or renal arteries.
Diagnosis is typically obtained by an allergist or other licensed practitioner performing a cold test. During the cold test, a piece of ice is held against the forearm, typically for 3–4 minutes. A positive result is a specific looking mark of raised red hives. The hives may be the shape of the ice, or it may radiate from the contact area of the ice." However, while these techniques assist in diagnosis, they do not provide information about temperature and stimulation time thresholds at which patients will start to develop symptoms."which is essential because it can establish disease severity and monitor the effectiveness of treatment.
Lichen planus has a unique microscopic appearance that is similar between cutaneous, mucosal and oral. A Periodic acid-Schiff stain of the biopsy may be used to visualise the specimen. Histological features seen include:
- thickening of the stratum corneum both with nuclei present (parakeratosis) and without (orthokeratosis). Parakeratosis is more common in oral variants of lichen planus.
- thickening of the stratum granulosum
- thickening of the stratum spinosum (acanthosis) with formation of colloid bodies (also known as Civatte bodies, Sabouraud bodies) that may stretch down to the lamina propria.
- liquefactive degeneration of the stratum basale, with separation from the underlying lamina propria, as a result of desmosome loss, creating small spaces (Max Joseph spaces).
- Infiltration of T cells in a band-like pattern into the dermis "hugging" the basal layer.
- Development of a "saw-tooth" appearance of the rete pegs, which is much more common in non-oral forms of lichen planus.