Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
For some types of chILD and few forms adult ILD genetic causes have been identified. These may be identified by blood tests. For a limited number of cases this is a definite advantage, as a precise molecular diagnosis can be done; frequently then there is no need for a lung biopsy. Testing is available for
Bronchoalveolar lavage (BAL) is a well-tolerated diagnostic procedure in ILD. BAL cytology analyses (differential cell counts) should be considered in the evaluation of patients with IPF at the discretion of the treating physician based on availability and experience at their institution. BAL may reveal alternative specific diagnoses: malignancy, infections, eosinophilic pneumonia, histiocytosis X, or alveolar proteinosis. In the evaluation of patients with suspected IPF, the most important application of BAL is in the exclusion of other diagnoses. Prominent lymphocytosis (>30%) generally allows excluding a diagnosis of IPF.
Investigation is tailored towards the symptoms and signs. A proper and detailed history looking for the occupational exposures, and for signs of conditions listed above is the first and probably the most important part of the workup in patients with interstitial lung disease. Pulmonary function tests usually show a restrictive defect with decreased diffusion capacity (DLCO).
A lung biopsy is required if the clinical history and imaging are not clearly suggestive of a specific diagnosis or malignancy cannot otherwise be ruled out. In cases where a lung biopsy is indicated, a trans-bronchial biopsy is usually unhelpful, and a surgical lung biopsy is often required.
According to the updated 2011 guidelines, in the absence of a typical UIP pattern on HRCT, a surgical lung biopsy is required for confident diagnosis.
Histologic specimens for the diagnosis of IPF must be taken at least in three different places and be large enough that the pathologist can comment on the underlying lung architecture. Small biopsies, such as those obtained via transbronchial lung biopsy (performed during bronchoscopy) are usually not sufficient for this purpose. Hence, larger biopsies obtained surgically via a thoracotomy or thoracoscopy are usually necessary.
Lung tissue from people with IPF usually show a characteristic histopathologic UIP pattern and is therefore the pathologic counterpart of IPF. Although a pathologic diagnosis of UIP often corresponds to a clinical diagnosis of IPF, a UIP histologic pattern can be seen in other diseases as well, and fibrosis of known origin (rheumatic diseases for example). There are four key features of UIP including interstitial fibrosis in a ‘patchwork pattern’, interstitial scarring, honeycomb changes and fibroblast foci.
Fibroblastic foci are dense collections of myofibroblasts and scar tissue and, together with honeycombing, are the main pathological findings that allow a diagnosis of UIP.
Chest x-rays of affected individuals typically reveal nonspecific alveolar opacities. Diagnosis is generally made by surgical or endoscopic biopsy of the lung, revealing the distinctive pathologic finding. The current gold standard of PAP diagnosis involves histopathological examination of alveolar specimens obtained from bronchoalveolar lavage and transbronchial lung biopsy.
Microscopically, the distal air spaces are filled with a granular, eosinophilic material that is positive with the PAS stain and the PAS diastase stain. The main histomorphologic differential diagnosis is pulmonary edema, which does not have dense bodies.
An ELISA to measure antibodies against GM-CSF has been validated for routine clinical diagnosis of autoimmune PAP.
Pulmonary function tests, arterial blood gases, ventilation perfusion relationships, and O2 diffusing capacity are normal in the initial stages of PAM. As the disease progresses, pulmonary function tests reveal typical features of a restrictive defect with reduced forced vital capacity (FVC) and elevated forced expiratory volume in FEV1/FVC.
On magnetic resonance imaging (MRI), the calcific lesions usually show hypointensity or a signal void on T1- and T2-weighted images.
The first advance in the treatment of pulmonary alveolar proteinosis came in November 1960, when Dr. Jose Ramirez-Rivera at the Veterans' Administration Hospital in Baltimore applied repeated "segmental flooding" as a means of physically removing the accumulated alveolar material.
The standard treatment for PAP is whole-lung lavage, in which the lung is filled with sterile fluid with subsequent removal of the fluid along with the abnormal surfactant material. This is generally effective at improving PAP symptoms, often for a prolonged period of time. Since the mouse discovery noted above, the use of GM-CSF injections has also been attempted, with variable success. Lung transplantation can be performed in refractory cases.
According to the American Thoracic Society (ATS), the general diagnostic criteria for asbestosis are:
- Evidence of structural pathology consistent with asbestosis, as documented by imaging or histology
- Evidence of causation by asbestos as documented by the occupational and environmental history, markers of exposure (usually pleural plaques), recovery of asbestos bodies, or other means
- Exclusion of alternative plausible causes for the findings
The abnormal chest x-ray and its interpretation remain the most important factors in establishing the presence of pulmonary fibrosis. The findings usually appear as small, irregular parenchymal opacities, primarily in the lung bases. Using the ILO Classification system, "s", "t", and/or "u" opacities predominate. CT or high-resolution CT (HRCT) are more sensitive than plain radiography at detecting pulmonary fibrosis (as well as any underlying pleural changes). More than 50% of people affected with asbestosis develop plaques in the parietal pleura, the space between the chest wall and lungs. Once apparent, the radiographic findings in asbestosis may slowly progress or remain static, even in the absence of further asbestos exposure. Rapid progression suggests an alternative diagnosis.
Asbestosis resembles many other diffuse interstitial lung diseases, including other pneumoconiosis. The differential diagnosis includes idiopathic pulmonary fibrosis (IPF), hypersensitivity pneumonitis, sarcoidosis, and others. The presence of pleural plaquing may provide supportive evidence of causation by asbestos. Although lung biopsy is usually not necessary, the presence of asbestos bodies in association with pulmonary fibrosis establishes the diagnosis. Conversely, interstitial pulmonary fibrosis in the absence of asbestos bodies is most likely not asbestosis. Asbestos bodies in the absence of fibrosis indicate exposure, not disease.
VALI is most common in patients receiving mechanical ventilation for acute lung injury or acute respiratory distress syndrome (ALI/ARDS).
Possible reasons for predisposition to VALI include:
- An injured lung may be at risk for further injury
- Cyclic atelectasis is particularly common in an injured lung
The diagnosis of RA was formerly based on detection of rheumatoid factor (RF). However, RF is also associated with other autoimmune diseases. The detection of anti-CCP is currently considered the most specific marker of RA. The diagnosis of rheumatoid lung disease is based on evaluation of pulmonary function, radiology, serology and lung biopsy. High resolution CT scans are preferred to chest X-rays due to their sensitivity and specificity.
Associated doctors to diagnosis this properly would be a Rheumatologists or Pulmonologist.
Within a physical examination doctors could find possible indications, such as hearing crackles (rales) when listening to the lungs with a stethoscope. Or, there may be decreased breath sounds, wheezing, a rubbing sound, or normal breath sounds. When listening to the heart, there may be abnormal heart sounds. Bronchoscopic, video-assisted, or open lung biopsy allows the histological characterization of pulmonary lesions, which can distinguish rheumatoid lung disease from other interstitial lung diseases.
The following tests may also show signs of rheumatoid lung disease:
- Chest x-ray may show:
- pleural effusion
- lower zone predominant reticular or reticulonodular pattern
- volume loss in advanced disease
- skeletal changes, e.g. erosion of clavicles, glenohumeral erosive arthropathy, superior rib notching
- Chest CT or HRCT features include:
- pleural thickening or effusion
- interstitial fibrosis
- bronchiectasis
- bronchiolitis obliterans
- large rheumatoid nodules
- single or multiple
- tend to be based peripherally
- may cavitate (necrobiotic lung nodules)
- cavitation of a peripheral nodule can lead to pneumothorax or haemopneumothorax.
- follicular bronchiolitis
- small centrilobular nodules or tree-in-bud
- rare
- Caplan syndrome
- Echocardiogram (may show pulmonary hypertension)
- Lung biopsy (bronchoscopic, video-assisted, or open), which may show pulmonary lesions
- Lung function tests
- Needle inserted into the fluid around the lung (thoracentesis)
- Blood tests for rheumatoid arthritis
The exact cause of rheumatoid lung disease is unknown. However, associated factors could be due largely to smoking. Sometimes, the medicines used to treat rheumatoid arthritis, especially methotrexate, may result in lung disease.
Prevention's:
- Stop smoking: Chemicals found in cigarettes can irritate already delicate lung tissue, leading to further complications.
- Having regular checkups: The doctor could listen to lungs and monitor breathing, because lung problems that are detected early can be easier to treat.
VALI does not need to be distinguished from progressive ALI/ARDS because management is the same in both. Additionally, definitive diagnosis of VALI may not be possible because of lack of sign or symptoms.
There is no cure available for asbestosis. Oxygen therapy at home is often necessary to relieve the shortness of breath and correct underlying low blood oxygen levels. Supportive treatment of symptoms includes respiratory physiotherapy to remove secretions from the lungs by postural drainage, chest percussion, and vibration. Nebulized medications may be prescribed in order to loosen secretions or treat underlying chronic obstructive pulmonary disease. Immunization against pneumococcal pneumonia and annual influenza vaccination is administered due to increased sensitivity to the diseases. Those with asbestosis are at increased risk for certain cancers. If the person smokes, quitting the habit reduces further damage. Periodic pulmonary function tests, chest x-rays, and clinical evaluations, including cancer screening/evaluations, are given to detect additional hazards.
Pulmonary veno-occlusive disease can only be well diagnosed with a lung biopsy. CT scans may show characteristic findings such as ground-glass opacities in centrilobular distribution, and mediastinal lymphadenopathy, but these findings are non-specific and may be seen in other conditions. However, pulmonary hypertension (revealed via physical examination), in the presence of pleural effusion (done via CT scan) usually indicates a diagnosis of pulmonary veno-occlusive disease. The prognosis indicates usually a 2-year (24 month) life expectancy after diagnosis.
Endogenous lipoid pneumonia and non-specific interstitial pneumonitis has been seen prior to the development of pulmonary alveolar proteinosis in a child.
There are three key elements to the diagnosis of silicosis. First, the patient history should reveal exposure to sufficient silica dust to cause this illness. Second, chest imaging (usually chest x-ray) that reveals findings consistent with silicosis. Third, there are no underlying illnesses that are more likely to be causing the abnormalities. Physical examination is usually unremarkable unless there is complicated disease. Also, the examination findings are not specific for silicosis. Pulmonary function testing may reveal airflow limitation, restrictive defects, reduced diffusion capacity, mixed defects, or may be normal (especially without complicated disease). Most cases of silicosis do not require tissue biopsy for diagnosis, but this may be necessary in some cases, primarily to exclude other conditions.
For uncomplicated silicosis, chest x-ray will confirm the presence of small ( 1 cm) occurs from coalescence of small opacities, particularly in the upper lung zones. With retraction of the lung tissue, there is compensatory emphysema. Enlargement of the hilum is common with chronic and accelerated silicosis. In about 5–10% of cases, the nodes will calcify circumferentially, producing so-called "eggshell" calcification. This finding is not pathognomonic (diagnostic) of silicosis. In some cases, the pulmonary nodules may also become calcified.
A computed tomography or CT scan can also provide a mode detailed analysis of the lungs, and can reveal cavitation due to concomitant mycobacterial infection.
Treatment is with corticosteroids and possibly intravenous immunoglobulins.
The best way to prevent silicosis is to identify work-place activities that produce respirable crystalline silica dust and then to eliminate or control the dust ("primary prevention"). Water spray is often used where dust emanates. Dust can also be controlled through dry air filtering.
Following observations on industry workers in Lucknow (India), experiments on rats found that jaggery (a traditional sugar) had a preventive action against silicosis.
Given the constant threat of bioterrorist related events, there is an urgent need to develop pulmonary protective and reparative agents that can be used by first responders in a mass casualty setting. Use in such a setting would require administration via a convenient route for e.g. intramuscular via epipens. Other feasible routes of administration could be inhalation and perhaps to a lesser extent oral – swallowing can be difficult in many forms of injury especially if accompanied by secretions or if victim is nauseous. A number of in vitro and in vivo models lend themselves to preclinical evaluation of novel pulmonary therapies.
Treatments for primary pulmonary hypertension such as prostacyclins and endothelin receptor antagonists can be fatal in people with PVOD due to the development of severe pulmonary edema, and worsening symptoms after initiation of these medications may be a clue to the diagnosis of pulmonary veno occlusive disease.
The definitive therapy is lung transplantation, though transplant rejection is always a possibility, in this measures must be taken in terms of appropriate treatment and medication.
Specific pretreatments, drugs to prevent chemically induced lung injuries due to respiratory airway toxins, are not available. Analgesic medications, oxygen, humidification, and ventilator support currently constitute standard therapy. In fact, mechanical ventilation remains the therapeutic mainstay for acute inhalation injury. The cornerstone of treatment is to keep the PaO2 > 60 mmHg (8.0 kPa), without causing injury to the lungs with excessive O2 or volutrauma. Pressure control ventilation is more versatile than volume control, although breaths should be volume limited, to prevent stretch injury to the alveoli. Positive end-expiratory pressure (PEEP) is used in mechanically ventilated patients with ARDS to improve oxygenation. Hemorrhaging, signifying substantial damage to the lining of the airways and lungs, can occur with exposure to highly corrosive chemicals and may require additional medical interventions. Corticosteroids are sometimes administered, and bronchodilators to treat bronchospasms. Drugs that reduce the inflammatory response, promote healing of tissues, and prevent the onset of pulmonary edema or secondary inflammation may be used following severe injury to prevent chronic scarring and airway narrowing.
Although current treatments can be administered in a controlled hospital setting, many hospitals are ill-suited for a situation involving mass casualties among civilians. Inexpensive positive-pressure devices that can be used easily in a mass casualty situation, and drugs to prevent inflammation and pulmonary edema are needed. Several drugs that have been approved by the FDA for other indications hold promise for treating chemically induced pulmonary edema. These include β2-agonists, dopamine, insulin, allopurinol, and non-steroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen. Ibuprofen is particularly appealing because it has an established safety record and can be easily administered as an initial intervention. Inhaled and systemic forms of β2-agonists used in the treatment of asthma and other commonly used medications, such as insulin, dopamine, and allopurinol have also been effective in reducing pulmonary edema in animal models but require further study. A recent study documented in the "AANA Journal" discussed the use of volatile anesthetic agents, such as sevoflurane, to be used as a bronchodilator that lowered peak airway pressures and improved oxygenation. Other promising drugs in earlier stages of development act at various steps in the complex molecular pathways underlying pulmonary edema. Some of these potential drugs target the inflammatory response or the specific site(s) of injury. Others modulate the activity of ion channels that control fluid transport across lung membranes or target surfactant, a substance that lines the air sacs in the lungs and prevents them from collapsing. Mechanistic information based on toxicology, biochemistry, and physiology may be instrumental in determining new targets for therapy. Mechanistic studies may also aid in the development of new diagnostic approaches. Some chemicals generate metabolic byproducts that could be used for diagnosis, but detection of these byproducts may not be possible until many hours after initial exposure. Additional research must be directed at developing sensitive and specific tests to identify individuals quickly after they have been exposed to varying levels of chemicals toxic to the respiratory tract.
Currently there are no clinically approved agents that can reduce pulmonary and airway cell dropout and avert the transition to pulmonary and /or airway fibrosis.
Chest radiographs (X-ray photographs) often show a pulmonary infection before physical signs of atypical pneumonia are observable at all.
This is occult pneumonia. In general, occult pneumonia is rather often present in patients with pneumonia and can also be caused by "Streptococcus pneumoniae", as the decrease of occult pneumonia after vaccination of children with a pneumococcal vaccine suggests.
Infiltration commonly begins in the perihilar region (where the bronchus begins) and spreads in a wedge- or fan-shaped fashion toward the periphery of the lung field. The process most often involves the lower lobe, but may affect any lobe or combination of lobes.
Mycoplasma is found more often in younger than in older people.
Older people are more often infected by Legionella.
When accompanied by the combination of situs inversus (reversal of the internal organs), chronic sinusitis, and bronchiectasis, it is known as Kartagener syndrome (only 50% of primary ciliary dyskinesia cases include situs inversus).