Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A 2014 systematic review of clinical trials does not support using routine rapid viral testing to decrease antibiotic use for children in emergency departments. It is unclear if rapid viral testing in the emergency department for children with acute febrile respiratory infections reduces the rates of antibiotic use, blood testing, or urine testing. The relative risk reduction of chest x-ray utilization in children screened with rapid viral testing is 77% compared with controls. In 2013 researchers developed a breath tester that can promptly diagnose lung infections.
Antigen detection, polymerase chain reaction assay, virus isolation, and serology can be used to identify adenovirus infections. Adenovirus typing is usually accomplished by hemagglutination-inhibition and/or neutralization with type-specific antisera. Since adenovirus can be excreted for prolonged periods, the presence of virus does not necessarily mean it is associated with disease.
Antibiotics do not help the many lower respiratory infections which are caused by parasites or viruses. While acute bronchitis often does not require antibiotic therapy, antibiotics can be given to patients with acute exacerbations of chronic bronchitis. The indications for treatment are increased dyspnoea, and an increase in the volume or purulence of the sputum. The treatment of bacterial pneumonia is selected by considering the age of the patient, the severity of the illness and the presence of underlying disease. Amoxicillin and doxycycline are suitable for many of the lower respiratory tract infections seen in general practice.
Vaccination helps prevent bronchopneumonia, mostly against influenza viruses, adenoviruses, measles, rubella, streptococcus pneumoniae, haemophilus influenzae, diphtheria, bacillus anthracis, chickenpox, and bordetella pertussis.
The diagnosis is typically made by clinical examination. Chest X-ray is sometimes useful to exclude bacterial pneumonia, but not indicated in routine cases.
Testing for the specific viral cause can be done but has little effect on management and thus is not routinely recommended. RSV testing by direct immunofluorescence testing on nasopharyngeal aspirate had a sensitivity of 61% and specificity of 89%. Identification of those who are RSV-positive can help for: disease surveillance, grouping ("cohorting") people together in hospital wards to prevent cross infection, predicting whether the disease course has peaked yet, reducing the need for other diagnostic procedures (by providing confidence that a cause has been identified).
Infants with bronchiolitis between the age of two and three months have a second infection by bacteria (usually a urinary tract infection) less than 6% of the time. Preliminary studies have suggested that elevated procalcitonin levels may assist clinicians in determining the presence of bacterial coinfection, which could prevent unnecessary antibiotic use and costs.
If a person with ILI also has either a history of exposure or an occupational or environmental risk of exposure to "Bacillus anthracis" (anthrax), then a differential diagnosis requires distinguishing between ILI and anthrax. Other rare causes of ILI include leukemia and metal fume fever.
Safe and effective adenovirus vaccines were developed for adenovirus serotypes 4 and 7, but were available only for preventing ARD among US military recruits, and production stopped in 1996. Strict attention to good infection-control practices is effective for stopping transmission in hospitals of adenovirus-associated disease, such as epidemic keratoconjunctivitis. Maintaining adequate levels of chlorination is necessary for preventing swimming pool-associated outbreaks of adenovirus conjunctivitis.
Normal surgical masks and N95 masks appear equivalent with respect to preventing respiratory infections.
ILI occurs in some horses after intramuscular injection of vaccines. For these horses, light exercise speeds resolution of the ILI. Non-steroidal anti-inflammatory drugs (NSAIDs) may be given with the vaccine.
The WHO has published several testing protocols for the disease. The standard method of testing is real-time reverse transcription polymerase chain reaction (rRT-PCR). The test is typically done on respiratory samples obtained by a nasopharyngeal swab; however, a nasal swab or sputum sample may also be used. Results are generally available within a few hours to two days. Blood tests can be used, but these require two blood samples taken two weeks apart and the results have little immediate value. Chinese scientists were able to isolate a strain of the coronavirus and publish the genetic sequence so laboratories across the world could independently develop polymerase chain reaction (PCR) tests to detect infection by the virus. As of 4 April 2020, antibody tests (which may detect active infections and whether a person had been infected in the past) were in development, but not yet widely used. The Chinese experience with testing has shown the accuracy is only 60 to 70%. The FDA in the United States approved the first point-of-care test on 21 March 2020 for use at the end of that month.
Diagnostic guidelines released by Zhongnan Hospital of Wuhan University suggested methods for detecting infections based upon clinical features and epidemiological risk. These involved identifying people who had at least two of the following symptoms in addition to a history of travel to Wuhan or contact with other infected people: fever, imaging features of pneumonia, normal or reduced white blood cell count or reduced lymphocyte count.
A study asked hospitalized COVID-19 patients to cough into a sterile container, thus producing a saliva sample, and detected virus in eleven of twelve patients using RT-PCR. This technique has the potential of being quicker than a swab and involving less risk to health care workers (collection at home or in the car).
Along with laboratory testing, chest CT scans may be helpful to diagnose COVID-19 in individuals with a high clinical suspicion of infection but is not recommended for routine screening. Bilateral multilobar ground-glass opacities with a peripheral, asymmetric and posterior distribution are common in early infection. Subpleural dominance, crazy paving (lobular septal thickening with variable alveolar filling), and consolidation may appear as the disease progresses.
The best prevention against viral pneumonia is vaccination against influenza, adenovirus, chickenpox, herpes zoster, measles, and rubella.
Physical examination may sometimes reveal low blood pressure, high heart rate, or low oxygen saturation. The respiratory rate may be faster than normal, and this may occur a day or two before other signs. Examination of the chest may be normal, but it may show decreased chest expansion on the affected side. Harsh breath sounds from the larger airways that are transmitted through the inflamed lung are termed bronchial breathing and are heard on auscultation with a stethoscope. Crackles (rales) may be heard over the affected area during inspiration. Percussion may be dulled over the affected lung, and increased, rather than decreased, vocal resonance distinguishes pneumonia from a pleural effusion.
Several diseases can present with similar signs and symptoms to pneumonia, such as: chronic obstructive pulmonary disease (COPD), asthma, pulmonary edema, bronchiectasis, lung cancer, and pulmonary emboli. Unlike pneumonia, asthma and COPD typically present with wheezing, pulmonary edema presents with an abnormal electrocardiogram, cancer and bronchiectasis present with a cough of longer duration, and pulmonary emboli presents with acute onset sharp chest pain and shortness of breath.
Few data are available about microscopic lesions and the pathophysiology of COVID-19. The main pathological findings at autopsy are:
- Macroscopy: pleurisy, pericarditis, lung consolidation and pulmonary oedema
- Four types of severity of viral pneumonia can be observed:
- minor pneumonia: minor serous exudation, minor fibrin exudation
- mild pneumonia: pulmonary oedema, pneumocyte hyperplasia, large atypical pneumocytes, interstitial inflammation with lymphocytic infiltration and multinucleated giant cell formation
- severe pneumonia: diffuse alveolar damage (DAD) with diffuse alveolar exudates. DAD is the cause of acute respiratory distress syndrome (ARDS) and severe hypoxemia.
- healing pneumonia: organisation of exudates in alveolar cavities and pulmonary interstitial fibrosis
- plasmocytosis in BAL
- Blood: disseminated intravascular coagulation (DIC); leukoerythroblastic reaction
- Liver: microvesicular steatosis
Prevention of bronchiolitis relies strongly on measures to reduce the spread of the viruses that cause respiratory infections (that is, handwashing, and avoiding exposure to those symptomatic with respiratory infections). In addition to good hygiene an improved immune system is a great tool for prevention. One way to improve the immune system is to feed the infant with breast milk, especially during the first month of life. Immunizations are available for premature infants who meet certain criteria (some cardiac and respiratory disorders) such as Palivizumab (a monoclonal antibody against RSV). Passive immunization therapy requires monthly injections during winter.
In cases of viral pneumonia where influenza A or B are thought to be causative agents, patients who are seen within 48 hours of symptom onset may benefit from treatment with oseltamivir or zanamivir. Respiratory syncytial virus (RSV) has no direct acting treatments, but ribavirin in indicated for severe cases. Herpes simplex virus and varicella-zoster virus infections are usually treated with aciclovir, whilst ganciclovir is used to treat cytomegalovirus. There is no known efficacious treatment for pneumonia caused by SARS coronavirus, MERS coronavirus, adenovirus, hantavirus, or parainfluenza. Care is largely supportive.
Croup is typically diagnosed based on signs and symptoms. The first step is to exclude other obstructive conditions of the upper airway, especially epiglottitis, an airway foreign body, subglottic stenosis, angioedema, retropharyngeal abscess, and bacterial tracheitis.
A frontal X-ray of the neck is not routinely performed, but if it is done, it may show a characteristic narrowing of the trachea, called the steeple sign, because of the subglottic stenosis, which resembles a steeple in shape. The steeple sign is suggestive of the diagnosis, but is absent in half of cases.
Other investigations (such as blood tests and viral culture) are discouraged, as they may cause unnecessary agitation and thus worsen the stress on the compromised airway. While viral cultures, obtained via nasopharyngeal aspiration, can be used to confirm the exact cause, these are usually restricted to research settings. Bacterial infection should be considered if a person does not improve with standard treatment, at which point further investigations may be indicated.
The most commonly used system for classifying the severity of croup is the Westley score. It is primarily used for research purposes rather than in clinical practice. It is the sum of points assigned for five factors: level of consciousness, cyanosis, stridor, air entry, and retractions. The points given for each factor is listed in the adjacent table, and the final score ranges from 0 to 17.
- A total score of ≤ 2 indicates "mild" croup. The characteristic barking cough and hoarseness may be present, but there is no stridor at rest.
- A total score of 3–5 is classified as "moderate" croup. It presents with easily heard stridor, but with few other signs.
- A total score of 6–11 is "severe" croup. It also presents with obvious stridor, but also features marked chest wall indrawing.
- A total score of ≥ 12 indicates impending respiratory failure. The barking cough and stridor may no longer be prominent at this stage.
85% of children presenting to the emergency department have mild disease; severe croup is rare (<1%).
Chest radiographs (X-ray photographs) often show a pulmonary infection before physical signs of atypical pneumonia are observable at all.
This is occult pneumonia. In general, occult pneumonia is rather often present in patients with pneumonia and can also be caused by "Streptococcus pneumoniae", as the decrease of occult pneumonia after vaccination of children with a pneumococcal vaccine suggests.
Infiltration commonly begins in the perihilar region (where the bronchus begins) and spreads in a wedge- or fan-shaped fashion toward the periphery of the lung field. The process most often involves the lower lobe, but may affect any lobe or combination of lobes.
Dogs will typically recover from kennel cough within a few weeks. However, secondary infections could lead to complications that could do more harm than the disease itself. Several opportunistic invaders have been recovered from the respiratory tracts of dogs with kennel cough, including Streptococcus, Pasteurella, Pseudomonas, and various coliforms. These bacteria have the potential to cause pneumonia or sepsis, which drastically increase the severity of the disease. These complications are evident in thoracic radiographic examinations. Findings will be mild in animals affected only by kennel cough, while those with complications may have evidence of segmental atelectasis and other severe side effects.
An oral whole cell nontypeable Haemophilus influenzae vaccine may protect against the disease, but "the evidence is mixed".
Antibiotics are given to treat any bacterial infection present. Cough suppressants are used if the cough is not productive. NSAIDs are often given to reduce fever and upper respiratory inflammation. Prevention is by vaccinating for canine adenovirus, distemper, parainfluenza, and "Bordetella". In kennels, the best prevention is to keep all the cages disinfected. In some cases, such as "doggie daycares" or nontraditional playcare-type boarding environments, it is usually not a cleaning or disinfecting issue, but rather an airborne issue, as the dogs are in contact with each other's saliva and breath. Although most kennels require proof of vaccination, the vaccination is not a fail-safe preventative. Just like human influenza, even after receiving the vaccination, a dog can still contract mutated strains or less severe cases.
MERS cases have been reported to have low white blood cell count, and in particular low lymphocytes.
For PCR testing, the WHO recommends obtaining samples from the lower respiratory tract via bronchoalveolar lavage (BAL), sputum sample or tracheal aspirate as these have the highest viral loads. There have also been studies utilizing upper respiratory sampling via nasopharyngeal swab.
Several highly sensitive, confirmatory real-time RT-PCR assays exist for rapid identification of MERS-CoV from patient-derived samples. These assays attempt to amplify upE (targets elements upstream of the E gene), open reading frame 1B (targets the ORF1b gene) and open reading frame 1A (targets the ORF1a gene). The WHO recommends the upE target for screening assays as it is highly sensitive. In addition, hemi-nested sequencing amplicons targeting RdRp (present in all coronaviruses) and nucleocapsid (N) gene (specific to MERS-CoV) fragments can be generated for confirmation via sequencing. Reports of potential polymorphisms in the N gene between isolates highlight the necessity for sequence-based characterization.
The WHO recommended testing algorithm is to start with an upE RT-PCR and if positive confirm with ORF 1A assay or RdRp or N gene sequence assay for confirmation. If both an upE and secondary assay are positive it is considered a confirmed case.
Protocols for biologically safe immunofluorescence assays (IFA) have also been developed; however, antibodies against betacoronaviruses are known to cross-react within the genus. This effectively limits their use to confirmatory applications. A more specific protein-microarray based assay has also been developed that did not show any cross-reactivity against population samples and serum known to be positive for other betacoronaviruses. Due to the limited validation done so far with serological assays, WHO guidance is that "cases where the testing laboratory has reported positive serological test results in the absence of PCR testing or sequencing, are considered probable cases of MERS-CoV infection, if they meet the other conditions of that case definition."
Diagnosis is typically based on a person's signs and symptoms. The color of the sputum does not indicate if the infection is viral or bacterial. Determining the underlying organism is typically not needed. Other causes of similar symptoms include asthma, pneumonia, bronchiolitis, bronchiectasis, and COPD. A chest X-ray may be useful to detect pneumonia.
Another common sign of bronchitis is a cough which lasts ten days to three weeks. If the cough lasts a month or a year it may be chronic bronchitis. In addition to having a cough a fever may be present. Acute bronchitis is normally caused by a viral infection. Typically these infections are rhinovirus, para influenza, or influenza. No specific testing is normally needed to diagnose acute bronchitis.
Diagnosis can be made in several ways, encompassing a range of multi-faceted techniques:
- Isolation and detection of the virus in cell culture.
- Detection of viral antigens directly within bodily respiratory tract secretions using immunofluorescence, enzyme immunoassays or fluroimmunoassays.
- Polymerase chain reaction (PCR).
- Analysis of specific IgG antibodies showing a subsequent rise in titre following infection (using paired serum specimens).
Because of the similarity in terms of the antigenic profile between the viruses, hemagglutination assay (HA) or hemadsorption inhibition (HAdI) processes are often used. Both complement fixation, neutralisation and enzyme linked immunosorbent assays – ELISA, can also be used to aid in the process of distinguishing between viral serotypes.