Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Critics of the diagnosis complain that case evidence is spotty and lacking controlled clinical studies.
Those diagnosed are usually treated with taking a low dose (80–100 mg) Aspirin a day. Anticoagulants (e.g. Warfarin, Coumadin) or clopidogrel (Plavix) are often additionally prescribed following formation of a medically significant clot. Thrombelastography is more commonly being used to diagnose hypercoagulability and monitor anti-platelet therapy.
The diagnosis of HPS is established by clinical findings of hypopigmentation
of the skin and hair, characteristic eye findings, and demonstration of absent
dense bodies on whole mount electron microscopy of platelets. Molecular
genetic testing of the HPS1 gene is available on a clinical basis for
individuals from northwestern Puerto Rico. Molecular testing of the HPS3 gene
is available on a clinical basis for individuals of central Puerto Rican or
Ashkenazi Jewish heritage. Sequence analysis is available on a clinical basis
for mutations in HPS1 and HPS4. Diagnosis of individuals with other types of
HPS is available on a research basis only.
When vWD is suspected, blood plasma of a patient must be investigated for quantitative and qualitative deficiencies of vWF. This is achieved by measuring the amount of vWF in a vWF antigen assay and the functionality of vWF with a glycoprotein (GP)Ib binding assay, a collagen binding assay, or a ristocetin cofactor activity (RiCof) or ristocetin induced platelet agglutination (RIPA) assays. Factor VIII levels are also performed because factor VIII is bound to vWF which protects the factor VIII from rapid breakdown within the blood. Deficiency of vWF can then lead to a reduction in factor VIII levels, which explains the elevation in PTT. Normal levels do not exclude all forms of vWD, particularly type 2, which may only be revealed by investigating platelet interaction with subendothelium under flow, a highly specialized coagulation study not routinely performed in most medical laboratories. A platelet aggregation assay will show an abnormal response to ristocetin with normal responses to the other agonists used. A platelet function assay may give an abnormal collagen/epinephrine closure time, and in most cases, a normal collagen/ADP time. Type 2N may be considered if factor VIII levels are disproportionately low, but confirmation requires a "factor VIII binding" assay. Additional laboratory tests that help classify sub-types of vWD include von-willebrand multimer analysis, modified ristocetin induced platelet aggregation assay and vWF propeptide to vWF antigen ratio propeptide. In cases of suspected acquired von-Willebrand syndrome, a mixing study study (analysis of patient plasma along with pooled normal plasma/PNP and a mixture of the two tested immediately, at one hour, and at two hours) should be performed. Detection of vWD is complicated by vWF being an acute phase reactant with levels rising in infection, pregnancy, and stress.
Other tests performed in any patient with bleeding problems are a complete blood count-CBC (especially platelet counts), activated partial thromboplastin time-APTT, prothrombin time with International Normalized Ratio-PTINR, thrombin time-TT, and fibrinogen level. Testing for factor IX may also be performed if hemophilia B is suspected. Other coagulation factor assays may be performed depending on the results of a coagulation screen. Patients with von Willebrand disease typically display a normal prothrombin time and a variable prolongation of partial thromboplastin time.
The testing for vWD can be influenced by laboratory procedures. Numerous variables exist in the testing procedure that may affect the validity of the test results and may result in a missed or erroneous diagnosis. The chance of procedural errors are typically greatest during the preanalytical phase (during collecting storage and transportation of the specimen) especially when the testing is contracted to an outside facility and the specimen is frozen and transported long distances. Diagnostic errors are not uncommon, and the rate of testing proficiency varies amongst laboratories, with error rates ranging from 7 to 22% in some studies to as high as 60% in cases of misclassification of vWD subtype. To increase the probability of a proper diagnosis, testing should be done at a facility with immediate on-site processing in a specialized coagulation laboratory.
HPS is one of the rare lung diseases currently being studied by The Rare Lung Diseases Consortium (RLDC). The RLDC is part of the Rare Diseases Clinical Research Network (RDCRN), an initiative of the Office of Rare Diseases Research (ORDR), of the National Center for Advancing Translational Sciences (NCATS). The RLDC is dedicated to developing new diagnostics and therapeutics for patients with rare lung diseases, through collaboration between the NIH, patient organizations and clinical investigators.
The diagnosis of this condition can be done via the following:
- Flow cytometry
- Bleeding time analysis
The diagnosis of this condition can be done via x-rays (with lack of normal distance L1 to L5), and additionally genetic testing is available to ascertain hypochondroplasia However, the physical characteristics(physical finding) is one of the most important in determining the condition.
Typically, diagnosis involves several preliminary tests of immune function, including basic evaluation of the humoral immune system and the cell-mediated immune system. A WBC differential will reveal extremely elevated levels of neutrophils (on the order of 6-10x normal) because they are unable to leave the blood vessels.
In the case of LAD-I, specific diagnosis is done by flow cytometry. This technique will reveal absent or reduced CD18 expression in the leukocyte membrane. Recently, prenatal diagnosis systems has been established, allowing an early detection of the disease.
LAD-II diagnosis includes the study of different glycosilated forms of the transferrin protein. In LAD-III, as platelet function is also affected, this could be used to differentiate it from the other types.
The four hereditary types of vWD described are type 1, type 2, type 3, and pseudo- or platelet-type. Most cases are hereditary, but acquired forms of vWD have been described. The International Society on Thrombosis and Haemostasis's classification depends on the definition of qualitative and quantitative defects.
Anomalies resembling Pelger–Huët anomaly that are acquired rather than congenital have been described as pseudo Pelger–Huët anomaly. These can develop in the course of acute myelogenous leukemia or chronic myelogenous leukemia and in myelodysplastic syndrome. It has also been described in Filovirus disease.
In patients with these conditions, the pseudo–Pelger–Huët cells tend to appear late in the disease and often appear after considerable chemotherapy has been administered. The morphologic changes have also been described in myxedema associated with panhypopituitarism, vitamin B12 and folate deficiency, multiple myeloma, enteroviral infections, malaria, muscular dystrophy, leukemoid reaction secondary to metastases to the bone marrow, and drug sensitivity, sulfa and valproate toxicities are examples. In some of these conditions, especially the drug-induced cases, identifying the change as Pelger–Huët anomaly is important because it obviates the need for further unnecessary testing for cancer.
Peripheral blood smear shows a predominance of neutrophils with bilobed nuclei which are composed of two nuclear masses connected with a thin filament of chromatin. It resembles the pince-nez glasses, so it is often referred to as pince-nez appearance. Usually the congenital form is not associated with thrombocytopenia and leukopenia, so if these features are present more detailed search for myelodysplasia is warranted, as pseudo-Pelger–Huët anomaly can be an early feature of myelodysplasia.
Screening among family members of people with known FH is cost-effective. Other strategies such as universal screening at the age of 16 were suggested in 2001. The latter approach may however be less cost-effective in the short term. Screening at an age lower than 16 was thought likely to lead to an unacceptably high rate of false positives.
A 2007 meta-analysis found that "the proposed strategy of screening children and parents for familial hypercholesterolaemia could have considerable impact in preventing the medical consequences of this disorder in two generations simultaneously." "The use of total cholesterol alone may best discriminate between people with and without FH between the ages of 1 to 9 years."
Screening of toddlers has been suggested, and results of a trial on 10,000 one-year-olds were published in 2016. Work was needed to find whether screening was cost-effective, and acceptable to families.
The diagnosis is made on the basis of clinical parameters, the peripheral blood smear, and low immunoglobulin levels. Typically, IgM levels are low, IgA levels are elevated, and IgE levels may be elevated; paraproteins are occasionally observed. Skin immunologic testing (allergy testing) may reveal hyposensitivity. Not all patients have a positive family history of the disorder; new mutations do occur. Often, leukemia may be suspected on the basis of low platelets and infections, and bone marrow biopsy may be performed. Decreased levels of Wiskott-Aldrich syndrome protein and/or confirmation of a causative mutation provides the most definitive diagnosis.
Sequence analysis can detect the WAS-related disorders of Wiskott–Aldrich syndrome, XLT, and XLN. Sequence analysis of the "WASp" gene can detect about 98% of mutations in males and 97% of mutations in female carriers. Because XLT and XLN symptoms may be less severe than full WAS and because female carriers are usually asymptomatic, clinical diagnosis can be elusive. In these cases, genetic testing can be instrumental in diagnosis of WAS-related disorders.
Life expectancy for individuals with hypochondroplasia is normal; the maximum height is about 147 cm or 4.8 ft.
The differential diagnosis for Bernard–Soulier syndrome includes both Glanzmann thrombasthenia and pediatric Von Willebrand disease. BSS platelets do not aggregate to ristocetin, and this defect is not corrected by the addition of normal plasma, distinguishing it from von Willebrand disease.
Jin et al. (2004) employ a numerical grading of severity:
- 0.5: intermittent thrombocytopenia
- 1.0: thrombocytopenia and small platelets (microthrombocytopenia)
- 2.0: microthrombocytopenia plus normally responsive eczema or occasional upper respiratory tract infections
- 2.5: microthrombocytopenia plus therapy-responsive but severe eczema or airway infections requiring antibiotics
- 3.0: microthrombocytopenia plus both eczema and airway infections requiring antibiotics
- 4.0: microthrombocytopenia plus eczema continuously requiring therapy and/or severe or life-threatening infections
- 5.0: microthrombocytopenia plus autoimmune disease or malignancy
In terms of treatment/management, bleeding events can be controlled by platelet transfusion.
Most heterozygotes, with few exceptions, do not have a bleeding diathesis. BSS presents as a bleeding disorder due to the inability of platelets to bind and aggregate at sites of vascular endothelial injury. In the event of an individual with mucosal bleeding tranexamic acid can be given.
The affected individual may need to avoid contact sports and medications such as aspirin, which can increase the possibility of bleeding. A potential complication is the possibility of the individual producing antiplatelet antibodies
Treatments range from platelet transfusions to surgery aimed at either centralizing the hand over the ulna to improve functionality of the hand or aimed at 'normalizing' the appearance of the arm, which is much shorter and 'clubbed.' There is some controversy surrounding the role of surgery. The infant mortality rate has been curbed by new technology, including platelet transfusions, which can even be performed in utero. The critical period is the first and sometimes second year of life. For most people with TAR, platelet counts improve as they grow out of childhood.
Scott syndrome is a rare congenital bleeding disorder that is due to a defect in a platelet mechanism required for blood coagulation.
Normally when a vascular injury occurs, platelets are activated and phosphatidylserine (PS) in the inner leaflet of the platelet membrane is transported to the outer leaflet of the platelet membrane, where it provides a binding site for plasma protein complexes that are involved in the conversion of prothrombin to thrombin, such as factor VIIIa-IXa (tenase) and factor Va-Xa (prothrombinase).
In Scott syndrome, the mechanism for translocating PS to the platelet membrane is defective, resulting in impaired thrombin formation. A similar defect in PS translocation has also been demonstrated in Scott syndrome red blood cells and Epstein-Barr virus transformed lymphocytes, suggesting that the defect in Scott syndrome reflects a mutation in a stem cell that affects multiple hematological lineages.
The basis for the defect in PS translocation is, at present, unknown. A candidate protein, scramblase, that may be involved in this process appears to be normal in Scott syndrome platelets. Other possible defects in PS translocation, reported in some patients, require further study. The initially reported patient with Scott Syndrome has been found to have a mutation at a splice-acceptor site of the gene encoding transmembrane protein 16F (TMEM16F). At present, the only treatment for episodes of bleeding is the transfusion of normal platelets.
A 2009 study reported results from 36 children who had received a stem cell transplant. At the time of follow-up (median time 62 months), 75% of the children were still alive.
The discovery was found by a team of doctors at McMaster University, led by Dr. Catherine Hayward, a hematologist.
Gray platelet syndrome (GPS), or platelet alpha-granule deficiency, is a rare congenital autosomal recessive bleeding disorder caused by a reduction or absence of alpha-granules in blood platelets, and the release of proteins normally contained in these granules into the marrow, causing myelofibrosis.
GPS is primarily inherited in an autosomal recessive manner, and the gene that is mutated in GPS has recently been mapped to chromosome 3p and identified as "NBEAL2". "NBEAL2" encodes a protein containing a BEACH domain that is predicted to be involved in vesicular trafficking. It is expressed in platelets and megakaryocytes and is required for the development of platelet alpha-granules. "NBEAL2" expression is also required for the development of thrombocytes in zebrafish.
GPS is characterized by "thrombocytopenia, and abnormally large agranular platelets in peripheral blood smears." The defect in GPS is the failure of megakaryocytes to package secretory proteins into alpha-granules. Patients with the GPS are affected by mild to moderate bleeding tendencies. Usually these are not major bleeds but there has been some life threatening cases. Also Women will tend to have heavy, irregular periods. Myelofibrosis is a condition that usually comes with the Gray Platelet syndrome.
Platelet storage pool deficiency has no treatment however management consists of antifibrinolytic medications if the individual has unusual bleeding event, additionally caution should be taken with usage of NSAIDS
TAR Syndrome (thrombocytopenia with absent radius) is a rare genetic disorder that is characterized by the absence of the radius bone in the forearm and a dramatically reduced platelet count.
The gold standard for measuring endothelial function is angiography with acetylcholine injection. Previously, this was not done outside of research because of the invasive and complex nature of the procedure. As mentioned above, the use of acetylcholine injections to test vasodilation is now safely used for procedures where arterial catheterization is employed (this method is less frequently used though, so overall acetylcholine is not used very often in this way).
A noninvasive method to measure endothelial dysfunction is % Flow Mediated Dilation (FMD) as measured by Brachial Artery Ultrasound Imaging (BAUI). Current measurements of endothelial function via FMD vary due to technical and physiological factors. For example, FMD is largely affected by hormones, especially for women. FMD values can differ for the same woman if she is in different phases of her menstrual cycle during the time of measurement. When using this technique on people who suffer from things like heart failure, renal failure, or hypertension, their increased sympathetic tone can often falsify the results. Furthermore, a negative correlation between percent flow mediated dilation and baseline artery size is recognised as a fundamental scaling problem, leading to biased estimates of endothelial function. For research on FMD an ANCOVA approach to adjusting FMD for variation in baseline diameter is more appropriate. Another challenge of FMD is variability across centers and the requirement of highly qualified technicians to perform the procedure.
A non-invasive, FDA-approved device for measuring endothelial function that works by measuring Reactive Hyperemia Index (RHI) is Itamar Medical's EndoPAT™. It has shown an 80% sensitivity and 86% specificity to diagnose coronary artery disease when compared against the gold standard, acetylcholine angiogram. This results suggests that this peripheral test reflects the physiology of the coronary endothelium. Endopat has been tested in several clinical trials at multiple centers (including major cohort studies such as the Framingham Heart Study, the Heart SCORE study, and the Gutenberg Health Study). The results from clinical trials have shown that EndoPAT™ is useful for risk evaluation, stratification and prognosis of getting major cardiovascular events (MACE).
Since NO maintains low tone and high compliance of the small arteries at rest a reduction of age-dependent small artery compliance is a marker for endothelial dysfunction that is associated with both functional and structural changes in the microcirculation that are predictive of subsequent morbid events Small artery compliance or stiffness can be assessed simply and at rest and can be distinguished from large artery stiffness by use of pulsewave analysis with the CV Profilor.
There has been no general recommendation for treatment of patients with Giant Platelet Disorders, as there are many different specific classifications to further categorize this disorder which each need differing treatments. Platelet transfusion is the main treatment for people presenting with bleeding symptoms. There have been experiments with DDAVP (1-deamino-8-arginine vasopressin) and splenectomy on people with Giant platelet disorders with mixed results, making this type of treatment contentious.