Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Detecting phosphorus deficiency can take multiple forms. A preliminary detection method is a visual inspection of plants. Darker green leaves and purplish or red pigment can indicate a deficiency in phosphorus. This method however can be an unclear diagnosis because other plant environment factors can result in similar discoloration symptoms. In commercial or well monitored settings for plants, phosphorus deficiency is diagnosed by scientific testing. Additionally, discoloration in plant leaves only occurs under fairly severe phosphorus deficiency so it is beneficial to planters and farmers to scientifically check phosphorus levels before discoloration occurs. The most prominent method of checking phosphorus levels is by soil testing. The major soil testing methods are Bray 1-P, Mehlich 3, and Olsen methods. Each of these methods are viable but each method has tendencies to be more accurate in known geographical areas. These tests use chemical solutions to extract phosphorus from the soil. The extract must then be analyzed to determine the concentration of the phosphorus. Colorimetry is used to determine this concentration. With the addition of the phosphorus extract into a colorimeter, there is visual color change of the solution and the degree to this color change is an indicator of phosphorus concentration. To apply this testing method on phosphorus deficiency, the measured phosphorus concentration must be compared to known values. Most plants have established and thoroughly tested optimal soil conditions. If the concentration of phosphorus measured from the colorimeter test is significantly lower than the plant’s optimal soil levels, then it is likely the plant is phosphorus deficient. The soil testing with colorimetric analysis, while widely used, can be subject to diagnostic problems as a result of interference from other present compounds and elements. Additional phosphorus detection methods such as spectral radiance and inductively coupled plasma spectrometry (ICP) are also implemented with the goal of improving reading accuracy. According to the World Congress of Soil Scientists, the advantages of these light-based measurement methods are their quickness of evaluation, simultaneous measurements of plant nutrients, and their non-destructive testing nature. Although these methods have experimental based evidence, unanimous approval of the methods has not yet been achieved.
Fertilisers like ammonium phosphate, calcium ammonium nitrate, urea can be supplied. Foliar spray of urea can be a quick method.
The most widely used potassium fertilizer is potassium chloride (muriate of potash). Other inorganic potassium fertilizers include potassium nitrate, potassium sulfate, and monopotassium phosphate. Potassium-rich treatments suitable for organic farming include feeding with home-made comfrey liquid, adding seaweed meal, composted bracken, and compost rich in decayed banana peels. Wood ash also has high potassium content. Adequate moisture is necessary for effective potassium uptake; low soil water reduces K uptake by plant roots. Liming acidic soils can increase potassium retention in some soils by reducing leaching; practices that increase soil organic matter can also increase potassium retention.
The visual symptoms of nitrogen deficiency mean that it can be relatively easy to detect in some plant species. Symptoms include poor plant growth, and leaves that are pale green or yellow because they are unable to make sufficient chlorophyll. Leaves in this state are said to be chlorotic. Lower leaves (older leaves) show symptoms first, since the plant will move nitrogen from older tissues to more important younger ones. Nevertheless, plants are reported to show nitrogen deficiency symptoms at different parts. For example, Nitrogen deficiency of tea is identified by retarded shoot growth and yellowing of younger leaves.
However, these physical symptoms can also be caused by numerous other stresses, such as deficiencies in other nutrients, toxicity, herbicide injury, disease, insect damage or environmental conditions. Therefore, nitrogen deficiency is most reliably detected by conducting quantitative tests in addition to assessing the plants visual symptoms. These tests include soil tests and plant tissue test.
Plant tissue tests destructively sample the plant of interest. However, nitrogen deficiency can also be detected non-destructively by measuring chlorophyll content.
Chlorophyll content tests work because leaf nitrogen content and chlorophyll concentration are closely linked, which would be expected since the majority of leaf nitrogen is contained in chlorophyll molecules. Chlorophyll content can be detected with a Chlorophyll content meter; a portable instrument that measures the greenness of leaves to estimate their relative chlorophyll concentration.
Chlorophyll content can also be assessed with a chlorophyll fluorometer, which measures a chlorophyll fluorescence ratio to identify phenolic compounds that are produced in higher quantities when nitrogen is limited. These instruments can therefore be used to non-destructively test for nitrogen deficiency.
Calcium deficiency can sometimes be rectified by adding agricultural lime to acid soils, aiming at a pH of 6.5, unless the subject plants specifically prefer acidic soil. Organic matter should be added to the soil to improve its moisture-retaining capacity. However, because of the nature of the disorder (i.e. poor transport of calcium to low transpiring tissues), the problem cannot generally be cured by the addition of calcium to the roots. In some species, the problem can be reduced by prophylactic spraying with calcium chloride of tissues at risk.
Plant damage is difficult to reverse, so corrective action should be taken immediately, supplemental applications of calcium nitrate at 200 ppm nitrogen, for example. Soil pH should be tested, and corrected if needed, because calcium deficiency is often associated with low pH.
Early fruit will generally have the worst systems, with them typically lessening as the season progresses. Preventative measures, such as irrigating prior to especially high temperatures and stable irrigation will minimize the occurrence.
Correction and prevention of phosphorus deficiency typically involves increasing the levels of available phosphorus into the soil. Planters introduce more phosphorus into the soil with bone meal, rock phosphate,manure, and phosphate-fertilizers. The introduction of these compounds into the soil however does not ensure the alleviation of phosphorus deficiency. There must be phosphorus in the soil, but the phosphorus must also be absorbed by the plant. The uptake of phosphorus is limited by the chemical form in which the phosphorus is available in the soil. A large percentage of phosphorus in soil is present in chemical compounds that plants are incapable of absorbing. Phosphorus must be present in soil in specific chemical arrangements to be usable as plant nutrients. Facilitation of usable phosphorus in soil can be optimized by maintaining soil within a specified pH range. Soil acidity, measured on the pH scale, partially dictates what chemical arrangements that phosphorus forms. Between pH 6 and 7, phosphorus makes the fewest number of bonds which render the nutrient unusable to plants. At this range of acidity the likeliness of phosphorus uptake is increased and the likeliness of phosphorus deficiency is decreased. Another component in the prevention and treatment of phosphorus is the plant’s disposition to absorb nutrients. Plant species and different plants within in the same species react differently to low levels of phosphorus in soil. Greater expansion of root systems generally correlate to greater nutrient uptake. Plants within a species that have larger roots are genetically advantaged and less prone to phosphorus deficiency. These plants can be cultivated and bred as a long term phosphorus deficiency prevention method. In conjunction to root size, other genetic root adaptations to low phosphorus conditions such as mycorrhizal symbioses have been found to increase nutrient intake. These biological adaptations to roots work to maintain the levels of vital nutrients. In larger commercial agriculture settings, variation of plants to adopt these desirable phosphorus intake adaptations may be a long-term phosphorus deficiency correction method.
Novel zinc biomarkers, such as the erythrocyte LA:DGLA ratio, have shown promise in pre-clinical and clinical trials and are being developed to more accurately detect dietary zinc deficiency.
Manganese deficiency is easy to cure and homeowners have several options when treating these symptoms. The first is to adjust the soil pH. Two materials commonly used for lowering the soil pH are aluminum sulfate and sulfur. Aluminum sulfate will change the soil pH instantly because the aluminum produces the acidity as soon as it dissolves in the soil. Sulfur, however, requires some time for the conversion to sulfuric acid with the aid of soil bacteria. If the soil pH is not a problem and there is no manganese actually in the soil then Foliar feeding for small plants and medicaps for large trees are both common ways for homeowners to get manganese into the plant.
Calcium (Ca) deficiency is a plant disorder that can be caused by insufficient level of available calcium in the growing medium, but is more frequently a product of low transpiration of the whole plant or more commonly the affected tissue. Plants are susceptible to such localized calcium deficiencies in low or non-transpiring tissues because calcium is not transported in the phloem. This may be due to water shortages, which slow the transportation of calcium to the plant, poor uptake of calcium through the stem, or too much nitrogen in the soil.
Boric acid (16.5%boron), borax (11.3% boron) or SoluBor (20.5% boron) can be applied to soils to correct boron deficiency. Typical applications of actual boron are about 1.1 kg/hectare or 1.0 lb/acre but optimum levels of boron vary with plant type. Borax, Boric Acid or Solubor can be dissolved in water and sprayed or applied to soil as a dust. Excess boron is toxic to plants so care must be taken to ensure correct application rate and even coverage. Leaves of many plants are damaged by boron; therefore, when in doubt, only apply to soil. Application of boron may not correct boron deficiency in alkaline soils because even with the addition of boron, it may remain unavailable for plant absorption. Continued application of boron may be necessary in soils that are susceptible to leaching such as sandy soils. Flushing soils containing toxic levels of boron with water can remove the boron through leaching.
Potassium deficiency, also known as potash deficiency, is a plant disorder that is most common on light, sandy soils, because potassium ions (K) are highly soluble and will easily leach from soils without colloids. Potassium deficiency is also common in chalky or peaty soils with a low clay content. It is also found on heavy clays with a poor structure.
Iron deficiency can be avoided by choosing appropriate soil for the growing conditions (e.g., avoid growing acid loving plants on lime soils), or by adding well-rotted manure or compost. If iron deficit chlorosis is suspected then check the pH of the soil with an appropriate test kit or instrument. Take a soil sample at surface and at depth. If the pH is over seven then consider soil remediation that will lower the pH toward the 6.5 - 7 range. Remediation includes: i) adding compost, manure, peat or similar organic matter (warning. Some retail blends of manure and compost have pH in the range 7 - 8 because of added lime. Read the MSDS if available. Beware of herbicide residues in manure. Source manure from a certified organic source.) ii) applying Ammonium Sulphate as a Nitrogen fertilizer (acidifying fertilizer due to decomposition of ammonium ion to nitrate in the soil and root zone) iii) applying elemental Sulphur to the soil (oxidizes over the course of months to produce sulphate/sulphite and lower pH). Note: adding acid directly e.g. sulphuric/hydrochloric/citric acid is dangerous as you may mobilize metal ions in the soil that are toxic and otherwise bound. Iron can be made available immediately to the plant by the use of iron sulphate or iron chelate compounds. Two common iron chelates are Fe EDTA and Fe EDDHA. Iron sulphate (Iron(II)_sulfate) and iron EDTA are only useful in soil up to PH 7.1 but they can be used as a foliar spray (Foliar_feeding). Iron EDDHA is useful up to PH 9 (highly alkaline) but must be applied to the soil and in the evening to avoid photodegradation. EDTA in the soil may mobilize Lead, EDDHA does not appear to.
Manganese deficiency can be easy to spot in plants because, much like magnesium deficiency, the leaves start to turn yellow and undergo interveinal chlorosis. The difference between these two is that the younger leaves near the top of the plant show symptoms first because manganese is not mobile while in magnesium deficiency show symptoms in older leaves near the bottom of the plant.
Magnesium supplements are used to prevent the disease when ruminants, for obvious economic reasons, must have access to dangerous pastures.
Magnesium (Mg) deficiency is a detrimental plant disorder that occurs most often in strongly acidic, light, sandy soils, where magnesium can be easily leached away. Magnesium is an essential micro nutrient found from 0.2-0.4% dry matter and is necessary for normal plant growth. Excess potassium, generally due to fertilizers, further aggravates the stress from the magnesium deficiency, as does aluminium toxicity.
Magnesium has an important role in photosynthesis because it forms the central atom of chlorophyll. Therefore, without sufficient amounts of magnesium, plants begin to degrade the chlorophyll in the old leaves. This causes the main symptom of magnesium deficiency, chlorosis, or yellowing between leaf veins, which stay green, giving the leaves a marbled appearance. Due to magnesium’s mobile nature, the plant will first break down chlorophyll in older leaves and transport the Mg to younger leaves which have greater photosynthetic needs. Therefore, the first sign of magnesium deficiency is the chlorosis of old leaves which progresses to the young leaves as the deficiency continues. Magnesium also is a necessary activator for many critical enzymes, including ribulosbiphosphate carboxylase (RuBisCO) and phosphoenolpyruvate carboxylase (PEPC), both essential enzymes in carbon fixation. Thus low amounts of Mg lead to a decrease in photosynthetic and enzymatic activity within the plants. Magnesium is also crucial in stabilizing ribosome structures, hence, a lack of magnesium causes depolymerization of ribosomes leading to pre-mature aging of the plant. After prolonged magnesium deficiency, necrosis and dropping of older leaves occurs. Plants deficient in magnesium also produce smaller, woodier fruits.
Magnesium deficiency may be confused with zinc or chlorine deficiencies, viruses, or natural ageing since all have similar symptoms. Adding Epsom salts (as a solution of 25 grams per liter or 4 oz per gal) or crushed dolomitic limestone to the soil can rectify magnesium deficiencies. For a more organic solution, applying home-made compost mulch can prevent leaching during excessive rainfall and provide plants with sufficient amounts of nutrients, including magnesium.
Zinc deficiency can be classified as acute, as may occur during prolonged inappropriate zinc-free total parenteral nutrition; or chronic, as may occur in dietary deficiency or inadequate absorption.
The affected animal should be left in the pasture, and not forced to come back to stall because excitation can darken the prognosis, even after adequate treatment.
Intravenous mixed calcium and magnesium injection are used. Subcutaneous injection of magnesium sulfate (200 ml of 50% solution) is also recommended.
Photosynthesis transforms sunlight energy into plant energy compounds such as sugars. For this
process to continue in plants, the sugars must be moved away from the site of their development,
and stored or used to make other compounds.
Boron increases the rate of transport of sugars (which are produced by photosynthesis in mature
plant leaves) to actively growing regions and also in developing fruits.
Boron is essential for providing sugars which are needed for root growth in all plants and also for
normal development of root nodules in legumes such as alfalfa, soybeans and peanuts.
Physiological plant disorders are caused by non-pathological conditions such as poor light, adverse weather, water-logging, phytotoxic compounds or a lack of nutrients, and affect the functioning of the plant system. Physiological disorders are distinguished from plant diseases caused by pathogens, such as a virus or fungus. While the symptoms of physiological disorders may appear disease-like, they can usually be prevented by altering environmental conditions. However, once a plant shows symptoms of a physiological disorder it is likely that that season’s growth or yield will be reduced.
Symptoms include leaves turning yellow or brown in the margins between the veins which may remain green, while young leaves may appear to be bleached. Fruit would be of poor quality and quantity. Any plant may be affected, but raspberries and pears are particularly susceptible, as well as most acid-loving plants such as azaleas and camellias.
Supplemental zinc can prevent iron absorption, leading to iron deficiency and possible peripheral neuropathy, with loss of sensation in extremities. Zinc and iron should be taken at different times of the day.
Cobalt poisoning is intoxication caused by excessive levels of cobalt in the body. Cobalt is an essential element for health in animals in minute amounts as a component of Vitamin B. A deficiency of cobalt, which is very rare, is also potentially lethal, leading to pernicious anemia.
Exposure to cobalt metal dust is most common in the fabrication of tungsten carbide. Another potential source is wear and tear of metal-on-metal hip prostheses; however, this is a relatively uncommon phenomenon with 18 reported cases being documented in the medical literature.
Zinc has been used therapeutically at a dose of 150 mg/day for months and in some cases for years, and in one case at a dose of up to 2000 mg/day zinc for months. A decrease in copper levels and hematological changes have been reported; however, those changes were completely reversed with the cessation of zinc intake.
However, zinc has been used as zinc gluconate and zinc acetate lozenges for treating the common cold and therefore the safety of usage at about 100 mg/day level is a relevant question. Thus, given that doses of over 150 mg/day for months to years has caused no permanent harm in many cases, a one-week usage of about 100 mg/day of zinc in the form of lozenges would not be expected to cause serious or irreversible adverse health issues in most persons.
Unlike iron, the elimination of zinc is concentration-dependent.
Diagnosis of the cause of a physiological disorder (or disease) can be difficult, but there are many web-based guides that may assist with this. Examples are: "Abiotic plant disorders: Symptoms, signs and solutions"; "Georgia Corn Diagnostic Guide"; "Diagnosing Plant Problems" (Kentucky); and "Diagnosing Plant Problems" (Virginia).
Some general tips to diagnosing plant disorders:
- Examine where symptoms first appear on a plant—on new leaves, old leaves or all over?
- Note the pattern of any discolouration or yellowing—is it all over, between the veins or around the edges? If only the veins are yellow deficiency is probably not involved.
- Note general patterns rather than looking at individual plants—are the symptoms distributed throughout a group of plants of the same type growing together. In the case of a deficiency all of the plants should be similarly effected, although distribution will depend on past treatments applied to the soil.
- Soil analysis, such as determining pH, can help to confirm the presence of physiological disorders.
- Consider recent conditions, such as heavy rains, dry spells, frosts, etc., may also help to determine the cause of plant disorders.