Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There are numerous steps one has to take to try to manage the disease as best as possible. The aim is at prevention because once the pathogen reaches the cherry trees, disease will surely ensue and there is no cure or remedy to prevent the loss of fruit production as well as the ultimate death of the tree.
The first approach, which is the best approach at an effective management practice would be to eradicate or severely damage the Mountain and Cherry Leafhopper population because the leafhoppers are the number one vectors for this pathogen. To do this, pesticides (i.e. acephate, bifenthrin, cyfluthrin) could be applied or biological control (predators of the leafhopper) could be used. There should be a pre-season application of control measures as well as a post-season application. This is to maximize the effort at controlling both types of leafhoppers (Cherry and Mountain), thus cutting down the starting inoculum at both stages in the life cycle.
In laboratory animals, prevention includes a low-stress environment, an adequate amount of nutritional feed, and appropriate sanitation measurements. Because animals likely ingest bacterial spores from contaminated bedding and feed, regular cleaning is a helpful method of prevention. No prevention methods are currently available for wild animal populations.
Sugarcane smut or "Ustilago scitaminea Sydow" is caused by the fungus "Sporisorium scitamineum"; smut was previously known as "Ustilago scitaminea". The smut 'whip' is a curved black structure which emerges from the leaf whorl, and which aids in the spreading of the disease. Sugarcane smut causes significant losses to the economic value of a sugarcane crop. Sugarcane smut has recently been found in the eastern seaboard areas of Australia, one of the world's highest-yielding sugar areas.
For the sugarcane crop to be infected by the disease, large spore concentrations are needed. The fungi uses its "smut-whip" to ensure that the disease is spread to other plants, which usually occurs over a time period of three months. As the inoculum is spread, the younger sugarcane buds just coming out of the soil will be the most susceptible. Because water is necessary for spore germination, irrigation has been shown to be a factor in spreading the disease. Therefore, special precautions need to be taken during irrigation to prevent spreading of the smut.
Another way to prevent the disease from occurring in the sugarcane is to use fungicide. This can be done by either pre-plant soaking or post-plant spraying with the specific fungicide. Pre-plant soaking has been proven to give the best results in preventing the disease, but post-plant spraying is a practical option for large sugarcane cultivations.
The smuts are multicellular fungi characterized by their large numbers of teliospores. The smuts get their name from a Germanic word for dirt because of their dark, thick-walled, and dust-like teliospores. They are mostly Ustilaginomycetes (of the class Teliomycetae, subphylum Basidiomycota) and can cause plant disease. The smuts are grouped with the other basidiomycetes because of their commonalities concerning sexual reproduction.
Smuts are cereal and crop pathogens that most notably affect members of the grass family ("Poaceae"). Economically important hosts include maize, barley, wheat, oats, sugarcane, and forage grasses. They eventually hijack the plants' reproductive systems, forming galls which darken and burst, releasing fungal teliospores which infect other plants nearby. Before infection can occur, the smuts need to undergo a successful mating to form dikaryotic hyphae (two haploid cells fuse to form a dikaryon).
Currently, antibiotic drugs such as penicillin or tetracycline are the only effective methods for disease treatment. Within wild populations, disease control consists of reducing the amount of bacterial spores present in the environment. This can be done by removing contaminated carcasses and scat.
Recently published evidence suggest heat stress and strenuous activity-induced cyclic uricosuria and crystalluria as a possible mechanism for the tubular lesion.
It is done through isolation of a bacteria from chickens suspected to have history of coryza and clinical finds from infected chickens also is used in the disease diagnosis. Polymerase chain reaction is a reliable means of diagnosis of the disease
White band disease (Acroporid white syndrome) is a coral disease that affects acroporid corals and is distinguishable by the white band of dead coral tissue that it forms. The disease completely destroys the coral tissue of Caribbean acroporid corals, specifically elkhorn coral ("Acropora palmata") and staghorn coral ("A. cervicornis"). The disease exhibits a pronounced division between the remaining coral tissue and the exposed coral skeleton. These symptoms are similar to white plague, except that white band disease is only found on acroporid corals, and white plague has not been found on any acroporid corals. It is part of a class of similar disease known as "white syndromes", many of which may be linked to species of "Vibrio" bacteria. While the pathogen for this disease has not been identified, "Vibrio carchariae" may be one of its factors. The degradation of coral tissue usually begins at the base of the coral, working its way up to the branch tips, but it can begin in the middle of a branch.
To date, CKDu (MeN) causes remain undetermined and debatable; nevertheless the number of cases could lead to the application of a precautionary principles from a humanitarian perspective. Due to the fact that the Mesoamerican nephropathy is regarded as a multifactorial disease the experimental design of comparative study should take following logical setting into account.
Multifactorial problem. Assume that a disease is definitely caused by A,B,C. The disease will develop if at least 2 risk factors are present in a certain region.
- formula_1 no prevalence of disease in region 1
- A no prevalence of disease in region 2
- B no prevalence of disease in region 3
- C no prevalence of disease in region 4
- A,B prevalence of disease in region 5
- B,C prevalence of disease in region 6
- C,A prevalence of disease in region 7
- A,B,C prevalence of disease in region 8
Removing the risk factor A in the experimental group in comparison to control group will lead to changes in the outbreak of the disease in only 2 of 8 combinatorically possible regions, even if we define A as a relevant risk factor in this theoretical setting. The same is true if the experimental design adds in a comparative study the risk factor A to the regions in the experimental group in comparison to the control group.
If the difference in experimental and control are 2 risk factors (adding or removing two risk factor e.g. A,B in the control group), then 4 regions will show a differences in prevalence of the disease, with the disadvantage that the experimental design cannot clarify if one or both risk factors A and B are contributing to the progression and prevalence of the disease.
Beside this logical analysis of a multifactorial setting there is space for further investigation, e.g.: Leptospirosis has been suggested as a possible contributing factor and oceanic nephrotoxic algae or agents have also been brought to the chart of possibilities as a culprit for this unusual form of kidney damage..
Assessment of the mentioned risk factors and their possible synergism will depend on more and better research.
Grover's may be suspected by its appearance, but since it has such a characteristic appearance under the microscope a shave skin or punch biopsy is often performed.
Feline hepatic lipidosis shares similar symptoms to other problems, including liver disease, renal failure, feline leukemia, Feline infectious peritonitis and some cancers. Diagnosis requires tests that target the liver to make an accurate diagnosis. Jaundice is highly indicative of the disease. Blood tests and a liver biopsy will confirm the presence of the disease.
Prevention is through use of Stock coryza-free birds. In other areas culling of the whole flock is a good means of the disease control. Bacterin also is used at a dose of two to reduce brutality of the disease. Precise exposure has also has been used but it should be done with care. Vaccination of the chicks is done in areas with high disease occurrence. Treatment is done by using antibiotics such as erythromycin, Dihydrostreptomycin, Streptomycin sulphonamides, tylosin and Flouroquinolones .
White band disease causes the affected coral tissue to decorticate off the skeleton in a white uniform band for which the disease was given its name. The band, which can range from a few millimeters to 10 centimeters wide, typically works its way from the base of the coral colony up to the coral branch tips. The band progresses up the coral branch at an approximate rate of 5 millimeters per day, causing tissue loss as it works its way to the branch tips. After the tissue is lost, the bare skeleton of the coral may later by colonized by filamentous algae.
There are two variants of white band disease, type I and type II. In Type I of white band disease, the tissue remaining on the coral branch shows no sign of coral bleaching, although the affected colony may appear lighter in color overall. However, a variant of white band disease, known simply as white band disease Type II, which was found on Staghorn colonies near the Bahamas, does produce a margin of bleached tissue before it is lost. Type II of white band disease can be mistaken for coral bleaching. By examining the remaining living coral tissue for bleaching, one can delineate which type of the disease affects a given coral.
Diagnosis is usually made on the clinical appearance without the need for a tissue biopsy. However, when biopsies have been taken, the histologic appearance is one of marked elongation and hyperparakeratosis of the filiform papillae and numerous bacteria growing on the epithelial surface.
Hairy tongue may be confused with hairy leukoplakia, however the latter usually occurs on the sides of the tongue and is associated with an opportunistic infection with Epstein–Barr virus on a background immunocompromise (almost always human immunodeficiency virus infection but rarely other conditions which suppress the immune system).
Adequate footwear is important to prevent trauma. General good health and nutrition also reduce ulcer risk. Adequate and prompt cleansing and treatment of ankle and leg skin breaks is also important. Improving hygiene and nutrition may help to prevent tropical ulcers.
Morbidity and mortality range from both extremes as the significance correlate with the underlying systemic disease.
There seems to be beneficial responses to clindamycin therapy as the lesions regress. This leads to the hypothesis that microorganisms may be playing a role in the initial stages of Kyrle disease.
A family with Kyrle disease were examined which their skin lesions were benign. However, when three of the young adult members were closely examined, they had posterior subcapsular cataracts and two of those three developed multiple tiny yellow-brown anterior stromal corneal opacities. In order to determine if there is any correlation between Kyrle disease and the ocular observations, more cases of Kyrle disease are to be analyzed.
All in all, since Kyrle disease is relatively rare, more cases need to be studied and analyzed in order to understand the underlying pathogenesis and to improve the management of the disease.
Hairy tongue (lingua villosa) refers to a marked accumulation of keratin on the filiform papillae on the dorsal surface of the tongue, giving a hair-like appearance. Black tongue (lengua negra) refers to a black discoloration of the tongue, which may or may not be associated with hairy tongue. However, the elongated papillae of hairy tongue usually develop discoloration due to growth of pigment producing bacteria and staining from food. Hence the term black hairy tongue, although hairy tongue may also be discolored yellow or brown. Transient, surface discoloration that is not associated with hairy tongue can be brushed off. Drug-induced black hairy tongue specifically refers to BHT that develops because of medication.
Untreated, the disease has a mortality rate upwards of 90%. Cats treated in the early stages can have a recovery rate of 80–90%. Left untreated, the cats usually die from severe malnutrition or complications from liver failure. Treatment usually involves aggressive feeding through one of several methods.
Cats can have a feeding tube inserted by a veterinarian so that the owner can feed the cat a liquid diet several times a day. They can also be force-fed through the mouth with a syringe. If the cat stops vomiting and regains its appetite, it can be fed in a food dish normally. The key is aggressive feeding so the body stops converting fat in the liver. The cat liver has a high regeneration rate and the disease will eventually reverse assuming that irreparable damage has not been done to the liver.
The best method to combat feline hepatic lipidosis is prevention and early detection. Obesity increases the chances of onset. In addition, if a cat stops eating for 1–2 days, it should be taken to a vet immediately. The longer the disease goes untreated, the higher the mortality rate.
Sweating causes lesions to form, but lesions aggravated by sweat usually return to "normal" fairly quicklyavoiding sweat is not a reason to avoid exercise. Minor outbreaks can be controlled with prescription strength topical cortisone creams. More severe eruptions usually clear up after treatment for one to three months with Accutane or tetracycline. If these fail or the outbreak is severe, PUVA phototherapy treatments, antifungal pills and cortisone injections are alternatives.
Some research has suggested a correlation of Grover's disease with mercury toxicity in which case Dimercaptosuccinic acid might help.
Common clinical signs and symptoms of Whipple's disease include diarrhea, steatorrhea, abdominal pain, weight loss, migratory arthropathy, fever, and neurological symptoms. Weight loss and diarrhea are the most common symptoms that lead to identification of the process, but may be preceded by chronic, unexplained, relapsing episodes of non-destructive seronegative arthritis, often of large joints.
Diagnosis is made by biopsy, usually by duodenal endoscopy, which reveals PAS-positive macrophages in the lamina propria containing non-acid-fast gram-positive bacilli. Immunohistochemical staining for antibodies against "T. whipplei" has been used to detect the organism in a variety of tissues, and a PCR-based assay is also available. PCR can be confirmatory if performed on blood, vitreous fluid, synovial fluid, heart valves, or cerebrospinal fluid. PCR of saliva, gastric or intestinal fluid, and stool specimens is highly sensitive, but not specific enough, indicating that healthy individuals can also harbor the causative bacterium without the manifestation of Whipple's disease, but that a negative PCR is most likely indicative of a healthy individual.
Endoscopy of the duodenum and jejunum can reveal pale yellow shaggy mucosa with erythematous eroded patches in patients with classic intestinal Whipple's disease, and small bowel X-rays may show some thickened folds. Other pathological findings may include enlarged mesenteric lymph nodes, hypercellularity of lamina propria with "foamy macrophages", and a concurrent decreased number of lymphocytes and plasma cells, per high power field view of the biopsy.
A D-Xylose test can be performed, which is where the patient will consume 4.5g of D-xylose, a sugar, by mouth. The urine excretion of D-Xylose is then measured after 5 hours. The majority of D-Xylose is absorbed normally, and should be found in the urine. If the D-Xylose is found to be low in the urine, this suggests an intestinal malabsorption problem such as bacterial overgrowth of the proximal small intestine, Whipple's Disease, or an autoimmune with diseases such as Celiac's Disease (allergy to gluten) or Crohn's Disease (autoimmune disease affecting the small intestine). With empiric antibiotic treatment after an initial positive D-Xylose test, and if a follow-up D-Xylose test is positive (decreased urine excretion) after antibiotic therapy, then this would signify it is not bacterial overgrowth of the proximal small intestine. Since Whipple's disease is so rare, a follow-up positive D-Xylose test more likely indicates a non-infectious etiology and more likely an autoimmune etiology. Clinical correlation is recommended to rule out Whipple's disease.
Tropical ulcer has been described as a disease of the 'poor and hungry'; it may be that slowly improving socioeconomic conditions and nutrition account for its decline. Urbanization of populations could be another factor, as tropical ulcer is usually a rural problem. More widespread use of shoes and socks also provides protection from initiating trauma. Despite this, susceptible individuals still develop tropical ulcers. Sometimes outbreaks can occur; one was recorded in Tanzania in sugarcane workers cutting the crops while barefoot. Tropical ulcers can also occur to the visitors of tropics. The disease is most common in native laborers and in schoolchildren of the tropics and subtropics during the rainy season and is caused in many instances by the bites of insects, poor hygiene, and pyogenic infections. Males are more commonly infected than females.
Treatment is with penicillin, ampicillin, tetracycline, or co-trimoxazole for one to two years. Any treatment lasting less than a year has an approximate relapse rate of 40%. Recent expert opinion is that Whipple's disease should be treated with doxycycline with hydroxychloroquine for 12 to 18 months. Sulfonamides (sulfadiazine or sulfamethoxazole) may be added for treatment of neurological symptoms.
Urbach–Wiethe disease is typically diagnosed by its clinical dermatological manifestations, particularly the beaded papules on the eyelids. Doctors can also test the hyaline material with a periodic acid-Schiff (PAS) staining, as the material colors strongly for this stain.
Immunohistochemical skin labeling for antibodies for the ECM1 protein as labeling has been shown to be reduced in the skin of those affected by Urbach–Wiethe disease. Staining with anti-type IV collagen antibodies or anti-type VII collagen antibodies reveals bright, thick bands at the dermoepidermal junction.
Non-contrast CT scans can image calcifications, but this is not typically used as a means of diagnosing the disease. This is partly due to the fact that not all Urbach-Wiethe patients exhibit calcifications, but also because similar lesions can be formed from other diseases such as herpes simplex and encephalitis. The discovery of mutations within the ECM1 gene has allowed the use of genetic testing to confirm initial clinical diagnoses of Urbach–Wiethe disease. It also allows doctors to better distinguish between Urbach–Wiethe disease and other similar diseases not caused by mutations in ECM1.