Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Biotinidase deficiency can be found by genetic testing. This is often done at birth as part of newborn screening in several states throughout the United States. Results are found through testing a small amount of blood gathered through a heel prick of the infant. As not all states require that this test be done, it is often skipped in those where such testing is not required. Biotinidase deficiency can also be found by sequencing the "BTD" gene, particularly in those with a family history or known familial gene mutation.
Diagnosis of mitochondrial trifunctional protein deficiency is often confirmed using tandem mass spectrometry. It should be noted that genetic counseling is available for this condition. Additionally the following exams are available:
- CBC
- Urine test
The diagnosis of short-chain acyl-coenzyme A dehydrogenase deficiency is based on the following:
- Newborn screening test
- Genetic testing
- Urine test
Current research suggests that nearly 8% of the population has at least partial DPD deficiency. A diagnostics determination test for DPD deficiency is available and it is expected that with a potential 500,000 people in North America using 5-FU this form of testing will increase. The whole genetic events affecting the DPYD gene and possibly impacting on its function are far from being elucidated, and epigenetic regulations could probably play a major role in DPD deficiency. It seems that the actual incidence of DPD deficiency remains to be understood because it could depend on the very technique used to detect it. Screening for genetic polymorphisms affecting the "DPYD" gene usually identify less than 5% of patients bearing critical mutations, whereas functional studies suggest that up to 20% of patients could actually show various levels of DPD deficiency.
Women could be more at risk than men. It is more common among African-Americans than it is among Caucasians.
Raw eggs should be avoided in those with biotin deficiency, because egg whites contain high levels of the anti-nutrient avidin. The name avidin literally means that this protein has an "avidity" (Latin: "to eagerly long for") for biotin. Avidin binds irreversibly to biotin and this compound is then excreted in the urine.
In individuals with marked hyperammonemia, a urea cycle disorder is usually high on the list of possible causes. While the immediate focus is lowering the patient's ammonia concentrations, identifying the specific cause of increased ammonia levels is key as well.
Diagnostic testing for OTC deficiency, or any individual with hyperammonemia involves plasma and urine amino acid analysis, urine organic acid analysis (to identify the presence or absence of orotic acid, as well as rule out an organic acidemia) and plasma acylcarnitines (will be normal in OTC deficiency, but can identify some other causes of hyperammonemia). An individual with untreated OTC deficiency will show decreased citrulline and arginine concentrations (because the enzyme block is proximal to these intermediates) and increased orotic acid. The increased orotic acid concentrations result from the buildup of carbamoyl phosphate. This biochemical phenotype (increased ammonia, low citrulline and increased orotic acid) is classic for OTC deficiency, but can also be seen in neonatal presentations of ornithine aminotransferase deficiency. Only severely affected males consistently demonstrate this classic biochemical phenotype.
Heterozygous females can be difficult to diagnose. With the rise of sequencing techniques, molecular testing has become preferred, particularly when the disease causing mutations in the family are known. Historically, heterozygous females were often diagnosed using an allopurinol challenge. In a female with reduced enzyme activity, an oral dose of allopurinol would be metabolized to oxypurinol ribonucleotide, which blocks the pyrimidine biosynthetic pathway. When this induced enzymatic block is combined with reduced physiologic enzyme activity as seen in heterozygotes, the elevation of orotic acid could be used to differentiate heterozygotes from unaffected individuals. This test was not universally effective, as it had both false negative and false positive results.
Ornithine transcarbamylase is only expressed in the liver, thus performing an enzyme assay to confirm the diagnosis requires a liver biopsy. Before molecular genetic testing was commonly available, this was one of the only methods for confirmation of a suspected diagnosis. In cases where prenatal diagnosis was requested, a fetal liver biopsy used to be required to confirm if a fetus was affected. Modern molecular techniques have eliminated this need, and gene sequencing is now the preferred method of diagnosis in asymptomatic family members after the diagnosis has been confirmed in a proband.
The differential diagnosis for short-chain acyl-coenzyme A dehydrogenase deficiency is: ethylmalonic encephalopathy, mitochondrial respiratory chain defects and "multiple" acyl-CoA dehydrogenase deficiency.
Treatment of THB deficiencies consists of THB supplementation (2–20 mg/kg per day) or diet to control blood phenylalanine concentration and replacement therapy with neurotransmitters precursors (L-DOPA and 5-HTP) and supplements of folinic acid in DHPR deficiency.
Tetrahydrobiopterin is available as a tablet for oral administration in the form of "tetrahydrobiopterin dihydrochloride" (BH4*2HCL). BH4*2HCL is FDA approved under the trade name Kuvan. The typical cost of treating a patient with Kuvan is $100,000 per year. BioMarin holds the patent for Kuvan until at least 2024, but Par Pharmaceutical has a right to produce a generic version by 2020. BH4*2HCL is indicated at least in tetrahydrobiopterin deficiency caused by GTPCH deficiency or PTPS deficiency.
A 1999 retrospective study of 74 cases of neonatal onset found that 32 (43%) patients died during their first hyperammonemic episode. Of those who survived, less than 20% survived to age 14. Few of these patients received liver transplants.
A small number of genetic variants have been repeatedly associated with DPD deficiency, such as IVS14+1G>A mutation in intron 14 coupled with exon 14 deletion (a.k.a. DPYD*2A), 496A>G in exon 6; 2846A>T in exon 22 and T1679G (a.k.a. DPYD*13) in exon 13. However, testing patients for these allelic variants usually show high specificity (i.e., bearing the mutation means that severe toxicity will occur indeed)but very low sentivity (i.e., not bearing the mutation does not mean that there is no risk for severe toxicities). Alternatively, phenotyping DPD using ex-vivo enzymatic assay or surrogate testing (i.e., monitoring physiological dihydrouracil to uracil ratio in plasma) has been presented as a possible upfront strategy to detect DPD deficiency. 5-FU test dose (i.e., preliminary administration of a small dose of 5-FU with pharmacokinetics evaluation) has been proposed as another possible alternative strategy to secure the use of fluoropyrimidine drugs.
This condition is very rare; approximately 600 cases have been reported worldwide. In most parts of the world, only 1% to 2% of all infants with high phenylalanine levels have this disorder. In Taiwan, about 30% of newborns with elevated levels of phenylalanine have a deficiency of THB.
The term homocystinuria describes an increased excretion of the thiol amino acid homocysteine in urine (and incidentally, also an increased concentration in plasma). The source of this increase may be one of many metabolic factors, only one of which is CBS deficiency. Others include the re-methylation defects (cobalamin defects, methionine sythase deficiency, MTHFR) and vitamin deficiencies (cobalamin (vitamin B12) deficiency, folate (vitamin B9) deficiency, riboflavin deficiency (vitamin B2), pyridoxal phosphate deficiency (vitamin B6)). In light of this information, a combined approach to laboratory diagnosis is required to reach a differential diagnosis.
CBS deficiency may be diagnosed by routine metabolic biochemistry. In the first instance, plasma or urine amino acid analysis will frequently show an elevation of methionine and the presence of homocysteine. Many neonatal screening programs include methionine as a metabolite. The disorder may be distinguished from the re-methylation defects (e.g., MTHFR, methionine synthase deficiency and the cobalamin defects) in lieu of the elevated methionine concentration. Additionally, organic acid analysis or quantitative determination of methylmalonic acid should help to exclude cobalamin (vitamin B12) defects and vitamin B12 deficiency giving a differential diagnosis.
The laboratory analysis of homocysteine itself is complicated because most homocysteine (possibly above 85%) is bound to other thiol amino acids and proteins in the form of disulphides (e.g., cysteine in cystine-homocysteine, homocysteine in homocysteine-homocysteine) via disulfide bonds. Since as an equilibrium process the proportion of free homocystene is variable a true value of total homocysteine (free + bound) is useful for confirming diagnosis and particularly for monitoring of treatment efficacy. To this end it is prudent to perform total homocyst(e)ine analysis in which all disulphide bonds are subject to reduction prior to analysis, traditionally by HPLC after derivatisation with a fluorescent agent, thus giving a true reflection of the quantity of homocysteine in a plasma sample.
Management for mitochondrial trifunctional protein deficiency entails the following:
- Avoiding factors that might precipitate condition
- Glucose
- Low fat/high carbohydrate nutrition
Individuals presenting with Type III galactosemia must consume a lactose- and galactose-restricted diet devoid of dairy products and mucilaginous plants. Dietary restriction is the only current treatment available for GALE deficiency. As glycoprotein and glycolipid metabolism generate endogenous galactose, however, Type III galactosemia may not be resolved solely through dietary restriction.
Upon clinical suspicion, diagnostic testing will often consist of measurement of amino acid concentrations in plasma, in search of a significantly elevated ornithine concentration. Measurement of urine amino acid concentrations is sometimes necessary, particularly in neonatal onset cases to identify the presence or absence of homocitrulline for ruling out ornithine translocase deficiency (hyperornithinemia, hyperammonemia, homocitrullinuria syndrome, HHH syndrome). Ornithine concentrations can be an unreliable indicator in the newborn period, thus newborn screening may not detect this condition, even if ornithine is included in the screening panel. Enzyme assays to measure the activity of ornithine aminotransferase can be performed from fibroblasts or lymphoblasts for confirmation or during the neonatal period when the results of biochemical testing is unclear. Molecular genetic testing is also an option.
Diagnosis of Fatty-acid metabolism disorder requires extensive lab testing.
Normally, in cases of hypoglycaemia, triglycerides and fatty acids are metabolised to provide glucose/energy. However, in this process, ketones are also produced and ketotic hypoglycaemia is expected. However, in cases where fatty acid metabolism is impaired, a non-ketotic hypoglycaemia may be the result, due to a break in the metabolic pathways for fatty-acid metabolism.
Screening for elevated galactose levels may detect GALE deficiency or dysfunction in infants, and mutation studies for GALE are clinically available.
Diagnosis of canine phosphofructokinase deficiency is similar to the blood tests used in diagnosis of humans. Blood tests measuring the total erythrocyte PFK activity are used for definitive diagnosis in most cases. DNA testing for presence of the condition is also available.
Treatment mostly takes the form of supportive care. Owners are advised to keep their dogs out of stressful or exciting situations, avoid high temperature environments and strenuous exercise. It is also important for the owner to be alert for any signs of a hemolytic episode. Dogs carrying the mutated form of the gene should be removed from the breeding population, in order to reduce incidence of the condition.
A diagnosis can be made through a muscle biopsy that shows excess glycogen accumulation. Glycogen deposits in the muscle are a result of the interruption of normal glucose breakdown that regulates the breakdown of glycogen. Blood tests are conducted to measure the activity of phosphofructokinase, which would be lower in a patient with this condition. Patients also commonly display elevated levels of creatine kinase.
Treatment usually entails that the patient refrain from strenuous exercise to prevent muscle pain and cramping. Avoiding carbohydrates is also recommended.
A ketogenic diet also improved the symptoms of an infant with PFK deficiency. The logic behind this treatment is that the low-carb high fat diet forces the body to use fatty acids as a primary energy source instead of glucose. This bypasses the enzymatic defect in glycolysis, lessening the impact of the mutated PFKM enzymes. This has not been widely studied enough to prove if it is a viable treatment, but testing is continuing to explore this option.
Genetic testing to determine whether or not a person is a carrier of the mutated gene is also available.
Definitive diagnosis requires LCAT gene analysis for mutation and functional activity. However, numerous lab tests may help with making a diagnosis such as complete blood count (CBC), urinalysis, blood chemistries, lipid panels, and plasma LCAT activity.
Fish-eye disease is characterized by abnormalities like visual impairment, plaques of fatty material, and dense opacification.
Low-protein food is recommended for this disorder, which requires food products low in particular types of amino acids (e.g., methionine).
Copper deficiency is a very rare disease and is often misdiagnosed several times by physicians before concluding the deficiency of copper through differential diagnosis (copper serum test and bone marrow biopsy are usually conclusive in diagnosing copper deficiency). On average, patients are diagnosed with copper deficiency around 1.1 years after their first symptoms are reported to a physician.
Copper deficiency can be treated with either oral copper supplementation or intravenous copper. If zinc intoxication is present, discontinuation of zinc may be sufficient to restore copper levels back to normal, but this usually is a very slow process. People who suffer from zinc intoxication will usually have to take copper supplements in addition to ceasing zinc consumption. Hematological manifestations are often quickly restored back to normal. The progression of the neurological symptoms will be stopped by appropriate treatment, but often with residual neurological disability.
PNP-deficiency is extremely rare. Only 33 patients with the disorder in the United States have been documented. In the United Kingdom only one child has been diagnosed with this disorder.
The treatment is some form of Vitamin E supplementation.
Aggressive vitamin E replacement therapy has been shown to either prevent, halt or improve visual abnormalities.
The characteristic hematological (blood) effects of copper deficiency are anemia (which may be microcytic, normocytic or macrocytic) and neutropenia. Thrombocytopenia (low blood platelets) is unusual.
The peripheral blood and bone marrow aspirate findings in copper deficiency can mimic myelodysplastic syndrome. Bone marrow aspirate in both conditions may show dysplasia of blood cell precursors and the presence of ring sideroblasts (erythroblasts containing multiple iron granules around the nucleus). Unlike most cases of myelodysplastic syndrome, the bone marrow aspirate in copper deficiency characteristically shows cytoplasmic vacuoles within red and white cell precursors, and karyotyping in cases of copper deficiency does not reveal cytogenetic features characteristic of myelodysplastic syndrome.
Anemia and neutropenia typically resolve within six weeks of copper replacement.