Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
For most cases the diagnosis for congenital amputation is not made until the infant is born. One procedure that is helpful in determining this condition in an infant is an ultrasound examination of a fetus when still in the mother's abdomen as it can reveal the absence of a limb. However, since ultrasounds are routine they may not pick up all the signs of some of the more subtle birth defects.
The most popular method of treatment for congenital amputation is having the child be fit for a prosthesis which can lead to normal development, so the muscles don't atrophy. If there is congenital amputation of the fingers, plastic surgery can be performed by using the big toe or second toes in place of the missing fingers of the hand.
In rare cases of amniotic banding syndrome, if diagnosed "in utero", fetal surgery may be considered to save a limb which is in danger of amputation.
Prosthesis is a synthetic alternative for missing limbs, teeth, and various other body parts. Advances in prosthetic limbs have increased greatly during the twentieth century. The use of new materials such as modern plastics, complex procedures and better pigments have created lighter in weight and more realistic looking artificial limbs. With the advancement of myoelectric prosthetic limbs, patients are able to move their limbs without the use of cords or other devices. The myoelectric limbs can detect electric signals from the nervous system and muscles. They were first used on adults, but now they are being fitted to children.
Patients that receive a loss of limbs due to phocomelia are typically treated with prosthetics. Infants at the age of 6 months are recommended to have a prosthetic mitten fitted; enabling them to get used to the prosthesis. A hook will be added when the child reaches the age of 2 years. Eventually the patient may receive a myoelectric prosthetic limb. Patients are treated in this way due to the lack of understanding at a young age and the absence of necessary tissues and bones to hold the prosthetic limb.
Studies suggest that prenatal care for mothers during their pregnancies can prevent congenital amputation. Knowing environmental and genetic risks is also important. Heavy exposure to chemicals, smoking, alcohol, poor diet, or engaging in any other teratogenic activities while pregnant can increase the risk of having a child born with a congenital amputation. Folic acid is a multivitamin that has been found to reduce birth defects.
Thalidomide was released onto the market in 1958 in West Germany under the label of Contergan. Primarily prescribed as a sedative or hypnotic, thalidomide also claimed to cure "anxiety, insomnia, gastritis, and tension". Afterwards it was used against nausea and to alleviate morning sickness in pregnant women. Thalidomide became an over-the-counter drug in Germany around 1960 and could be bought without a prescription. Shortly after the drug was sold, in Germany, between 5,000 and 7,000 infants were born with phocomelia. Merely 40% of these children survived. Research also proves that although phocomelia did exist through the 1940s and 1950s, cases of severe phocomelia multiplied in the 1960s, when thalidomide was released in Germany; the direct cause was traced to thalidomide. The statistic was given that "50 percent of the mothers with deformed children had taken thalidomide during the first trimester of pregnancy." Throughout Europe, Australia, and the United States, 10,000 cases were reported of infants with phocomelia; only 50% of the 10,000 survived. Thalidomide became effectively linked to death or severe disabilities among babies. Those subjected to thalidomide while in the womb experienced limb deficiencies in a way that the long limbs either were not developed or presented themselves as stumps. Other effects included: deformed eyes, hearts, alimentary, and urinary tracts, and blindness and deafness.
Carrier testing for Roberts syndrome requires prior identification of the disease-causing mutation in the family. Carriers for the disorder are heterozygotes due to the autosomal recessive nature of the disease. Carriers are also not at risk for contracting Roberts syndrome themselves. A prenatal diagnosis of Roberts syndrome requires an ultrasound examination paired with cytogenetic testing or prior identification of the disease-causing ESCO2 mutations in the family.
Cytogenetic preparations that have been stained by either Giemsa or C-banding techniques will show two characteristic chromosomal abnormalities. The first chromosomal abnormality is called premature centromere separation (PCS) and is the most likely pathogenic mechanism for Roberts syndrome. Chromosomes that have PCS will have their centromeres separate during metaphase rather than anaphase (one phase earlier than normal chromosomes). The second chromosomal abnormality is called heterochromatin repulsion (HR). Chromosomes that have HR experience separation of the heterochromatic regions during metaphase. Chromosomes with these two abnormalities will display a "railroad track" appearance because of the absence of primary constriction and repulsion at the heterochromatic regions. The heterochromatic regions are the areas near the centromeres and nucleolar organizers. Carrier status cannot be determined by cytogenetic testing. Other common findings of cytogenetic testing on Roberts syndrome patients are listed below.
- Aneuploidy- the occurrence of one or more extra or missing chromosomes
- Micronucleation- nucleus is smaller than normal
- Multilobulated Nuclei- the nucleus has more than one lobe
Ectromelia is a congenital condition where long bones are missing or underdeveloped.
Examples include:
- Amelia
- Hemimelia
- Phocomelia
- Sirenomelia
Dysmelia can be caused by
- inheritance of abnormal genes, e.g. polydactyly, ectrodactyly or brachydactyly, symptoms of deformed limbs then often occur in combination with other symptoms (syndromes)
- external causes during pregnancy (thus not inherited), e.g. via amniotic band syndrome
- teratogenic drugs (e.g. thalidomide, which causes phocomelia) or environmental chemicals
- ionizing radiation (nuclear weapons, radioiodine, radiation therapy)
- infections
- metabolic imbalance
Dysmelia can refer to
- missing (aplasia) limbs: amelia, oligodactyly, congenital amputation e.g. Tibial or Radial aplasia
- malformation of limbs: shortening (micromelia, rhizomelia or mesomelia), ectrodactyly, phocomelia, meromelia, syndactyly, brachydactyly, club foot
- too many limbs: polymelia, polydactyly, polysyndactyly
- others: Tetraamelia, hemimelia, Symbrachydactyly
A unibrow is part of normal human variation, but can also stem from developmental disorders. A unibrow is a recognized feature of Cornelia De Lange syndrome, a genetic disorder whose main features include moderate to severe learning difficulties, limb abnormalities such as oligodactyly (fewer than normal fingers or toes) and phocomelia (malformed limbs), and facial abnormalities including a long philtrum (the slight depression/line between the nose and mouth).
Other medical conditions associated with a unibrow include:
- Waardenburg Syndrome;
- Patau Syndrome;
- Smith-Lemli-Opitz Syndrome;
- Sanfilippo Syndrome;
- 3p Deletion Syndrome;
- Chromosome Deletion Dillan 4p Syndrome (Wolf–Hirschhorn Syndrome);
- Gorlin Syndrome (Basal Cell Nevus Syndrome);
- Frontometaphyseal Dysplasia;
- ATRX Syndrome;
- Chromosome 9q34 Microdeletion Syndrome or Kleefstra syndrome.
A unibrow (or monobrow; called synophrys in medicine) is a single eyebrow created when the two eyebrows meet in the middle above the bridge of the nose. The hair above the bridge of the nose is usually of the same color and thickness as the eyebrows, giving the appearance that they converge to form one uninterrupted line of hair.
A low socioeconomic status in a deprived neighborhood may include exposure to “environmental stressors and risk factors.” Socioeconomic inequalities are commonly measured by the Cartairs-Morris score, Index of Multiple Deprivation, Townsend deprivation index, and the Jarman score. The Jarman score, for example, considers “unemployment, overcrowding, single parents, under-fives, elderly living alone, ethnicity, low social class and residential mobility.” In Vos’ meta-analysis these indices are used to view the effect of low SES neighborhoods on maternal health. In the meta-analysis, data from individual studies were collected from 1985 up until 2008. Vos concludes that a correlation exists between prenatal adversities and deprived neighborhoods. Other studies have shown that low SES is closely associated with the development of the fetus in utero and growth retardation. Studies also suggest that children born in low SES families are “likely to be born prematurely, at low birth weight, or with asphyxia, a birth defect, a disability, fetal alcohol syndrome, or AIDS.” Bradley and Corwyn also suggest that congenital disorders arise from the mother’s lack of nutrition, a poor lifestyle, maternal substance abuse and “living in a neighborhood that contains hazards affecting fetal development (toxic waste dumps).” In a meta-analysis that viewed how inequalities influenced maternal health, it was suggested that deprived neighborhoods often promoted behaviors such as smoking, drug and alcohol use. After controlling for socioeconomic factors and ethnicity, several individual studies demonstrated an association with outcomes such as perinatal mortality and preterm birth.
Although significant progress has been made in identifying the etiology of some birth defects, approximately 65% have no known or identifiable cause. These are referred to as sporadic, a term that implies an unknown cause, random occurrence regardless of maternal living conditions, and a low recurrence risk for future children. For 20-25% of anomalies there seems to be a "multifactorial" cause, meaning a complex interaction of multiple minor genetic anomalies with environmental risk factors. Another 10–13% of anomalies have a purely environmental cause (e.g. infections, illness, or drug abuse in the mother). Only 12–25% of anomalies have a purely genetic cause. Of these, the majority are chromosomal anomalies.
Ear agenesis is a medical condition in which people are born without ears.
Because the middle and inner ears are necessary for hearing, people with complete agenesis of the ears are totally deaf. Minor agenesis that affects only the visible parts of the outer ear, which may be called microtia, typically produces cosmetic concerns and perhaps hearing impairment if the opening to the ear canal is blocked, but not deafness.
Eye agenesis is a medical condition in which people are born with no eyes.
RL syndrome is characterized by renal dysplasia, growth retardation, phocomelia or mesomelia, radiohumeral fusion (joining of radius and humerus), rib abnormalities, anomalies of the external genitalia and potter-like facies among many others.
Renal dysplasia-limb defects syndrome (RL syndrome), also known as Ulbright–Hodes syndrome, is a very rare autosomal recessive congenital disorder. It has been described in three infants, all of whom died shortly after birth.
Common investigations include blood urea nitrogen (BUN) and electrolytes, liver function tests, urinalysis, and thyroid function tests. Hematological investigations include hematocrit levels, which are usually raised in HG. An ultrasound scan may be needed to know gestational status and to exclude molar or partial molar pregnancy.
Hyperemesis gravidarum is considered a diagnosis of exclusion. HG can be associated with serious problems in the mother or baby, such as Wernicke's encephalopathy, coagulopathy, peripheral neuropathy.
Women experiencing hyperemesis gravidarum often are dehydrated and lose weight despite efforts to eat. The onset of the nausea and vomiting in hyperemesis gravidarum is typically before the twenty-second week of pregnancy.