Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A chondroma is a benign cartilaginous tumor, which is encapsulated with a lobular growing pattern.
Tumor cells (chondrocytes, cartilaginous cells) resemble normal cells and produce the cartilaginous matrix (amorphous, basophilic material).
Characteristic features of this tumor include the vascular axes within the tumor, which make the distinction with normal hyaline cartilage.
Based upon location, a chondroma can be described as an enchondroma or ecchondroma.
- enchondroma - tumor grows within the bone and expands it.
- ecchondroma - grows outward from the bone and this is rare.
Treatment
- best left alone
- if it causes fractures (enchondroma) or is unsightly it should be removed by curettage and the defect filled with bone graft.
Surgical excision is common and is a very effective mode of treatment.
Cartilage tumors form in Cartilage tissue. They can be either benign (Chondroma) or malignant (chondrosarcoma). Frequently these tumors appear in bone, and not in pre-existing cartilage tissue. In some cases tumors that formed in other tissues may produce a cartilage-like matrix, an example of this is the pleomorphic adenoma of the sexual reproduction salivary glands.
Some benign tumors need no treatment; others may be removed if they cause problems such as seizures, discomfort or cosmetic concerns. Surgery is usually the most effective approach and is used to treat most benign tumors. In some case other treatments may be of use. Adenomas of the rectum may be treated with sclerotherapy, a treatment in which chemicals are used to shrink blood vessels in order to cut off the blood supply. Most benign tumors do not respond to chemotherapy or radiation therapy, although there are exceptions; benign intercranial tumors are sometimes treated with radiation therapy and chemotherapy under certain circumstances. Radiation can also be used to treat hemangiomas in the rectum. Benign skin tumors are usually surgically resected but other treatments such as cryotherapy, curettage, electrodesiccation, laser therapy, dermabrasion, chemical peels and topical medication are used.
Extraskeletal chondroma (also known as "Chondroma of soft parts") is a cutaneous condition, a rare benign tumor of mature cartilage.
The purpose of radiologic imaging is to locate the lesion, evaluate for signs of invasion and detect metastasis. Features of GIST vary depending on tumor size and organ of origin. The diameter can range from a few millimeters to more than 30 cm. Larger tumors usually cause symptoms in contrast to those found incidentally which tend to be smaller and have better prognosis. Large tumors tend to exhibit malignant behavior but small GISTs may also demonstrate clinically aggressive behavior.
Plain radiographs are not very helpful in the evaluation of GISTs. If an abnormality is seen, it will be an indirect sign due to the tumor mass effect on adjacent organs. On abdominal x-ray, stomach GISTs may appear as a radiopaque mass altering the shape of the gastric air shadow. Intestinal GISTs may displace loops of bowel and larger tumors may obstruct the bowel and films will show an obstructive pattern. If cavitations are present, plain radiographs will show collections of air within the tumor. Calcification is an unusual feature of GIST but if present can be visible on plain films.
Barium fluoroscopic examinations and CT are commonly used to evaluate the patient with abdominal complaints. Barium swallow images show abnormalities in 80% of GIST cases. However, some GISTs may be located entirely outside the lumen of the bowel and will not be appreciated with a barium swallow. Even in cases when the barium swallow is abnormal, an MRI or CT scan must follow since it is impossible to evaluate abdominal cavities and other abdominal organs with a barium swallow alone. In a CT scan, abnormalities may be seen in 87% of patients and it should be made with both oral and intravenous contrast. Among imaging studies, MRI has the best tissue contrast, which aids in the identification of masses within the GI tract (intramural masses). Intravenous contrast material is needed to evaluate lesion vascularity.
Preferred imaging modalities in the evaluation of GISTs are CT and MRI, and, in selected situations, endoscopic ultrasound. CT advantages include its ability to demonstrate evidence of nearby organ invasion, ascites, and metastases. The ability of MRI to produce images in multiple planes is helpful in determining the bowel as the organ of origin (which is difficult when the tumor is very large), facilitating diagnosis.
CT scanning is often undertaken (see the "radiology" section).
The definitive diagnosis is made with a biopsy, which can be obtained endoscopically, percutaneously with CT or ultrasound guidance or at the time of surgery. A biopsy sample will be investigated under the microscope by a pathologist physician. The pathologist examines the histopathology to identify the characteristics of GISTs (spindle cells in 70-80%, epitheloid aspect in 20-30%). Smaller tumors can usually be confined to the muscularis propria layer of the intestinal wall. Large ones grow, mainly outward, from the bowel wall until the point where they outstrip their blood supply and necrose (die) on the inside, forming a cavity that may eventually come to communicate with the bowel lumen.
When GIST is suspected—as opposed to other causes for similar tumors—the pathologist can use immunohistochemistry (specific antibodies that stain the molecule CD117 [also known as "c-kit"] —see below). 95% of all GISTs are CD117-positive (other possible markers include CD34, DOG-1, desmin, and vimentin). Other cells that show CD117 positivity are mast cells.
If the CD117 stain is negative and suspicion remains that the tumor is a GIST, the newer antibody DOG-1 (Discovered On GIST-1) can be used. Also sequencing of Kit and PDGFRA can be used to prove the diagnosis.
An ecchondroma is a type of chondroma that is subperiosteal. A proliferation is known as "ecchondrosis".
Subungual exostoses are bony projections which arise from the dorsal surface of the distal phalanx, most commonly of the hallux.
A benign tumor is a mass of cells (tumor) that lacks the ability to invade neighboring tissue or metastasize. Benign tumors do not spread into, or invade, nearby tissues. Benign tumors can sometimes be quite large, however. When removed, they usually do not grow back, whereas malignant tumors sometimes do. Unlike most benign tumors elsewhere in the body, benign brain tumors can be life threatening. Benign tumors generally have a slower growth rate than malignant tumors and the tumor cells are usually more differentiated (cells have normal features). Benign tumors are typically surrounded by an outer surface (fibrous sheath of connective tissue) or remain with the epithelium. Common examples of benign tumors include moles and uterine fibroids.
Although benign tumors will not metastasize or locally invade tissues, some types may still produce negative health effects. The growth of benign tumors produces a "mass effect" that can compress tissues and may cause nerve damage, reduction of blood to an area of the body (ischaemia), tissue death (necrosis) and organ damage. The mass effect of tumors is more prominent if the tumor is within an enclosed space such as the cranium, respiratory tract, sinus or inside bones. Tumors of endocrine tissues may overproduce certain hormones, especially when the cells are well differentiated. Examples include thyroid adenomas and adrenocortical adenomas.
Although most benign tumors are not life-threatening, many types of benign tumors have the potential to become cancerous (malignant) through a process known as tumour progression. For this reason and other possible negative health effects, some benign tumors are removed by surgery.
Carney triad (CT) is characterized by the coexistence of three types of neoplasms, mainly in young women, including gastric gastrointestinal stromal tumor, pulmonary chondroma, and extra-adrenal paraganglioma. The underlying genetic defect remains elusive. CT is distinct from Carney complex, and the Carney-Stratakis syndrome.
Carney (CT), named for J Aidan Carney, is considered to be a specific type of multiple endocrine neoplasia (MEN). The three classically associated tumors are a subset of gastric epithelioid leiomyosarcoma (it is now known that this subset is actually gastrointestinal stromal tumor arising from the interstitial cells of Cajal), pulmonary chondroma, and extra-adrenal paraganglioma.
The condition manifests more commonly in females. Multiple tumors in multiple organs in young patients, with occasional sibling involvement, suggested an inherited disorder, but the underlying genetic basis has not been identified.
In addition to these three classical tumors, there is an increased incidence of pheochromocytoma, esophageal leiomyoma and adrenocortical adenoma.
The original description employed the then-prevailing terminology of gastric epithelioid leiomyosarcoma. Subsequent advances in molecular biology have led to the current terminology of gastrointestinal stromal tumors (GISTs). However, there is limited evidence to suggest that the gastrointestinal stromal tumors (GIST) in Carney triad lack CD117 (c-kit) mutations (i.e., they are wild-type), and hence these GISTs may prove unresponsive to Gleevec.
A clinical diagnosis of SCS can be verified by testing the TWIST1 gene (only gene in which mutations are known to cause SCS) for mutations using DNA analysis, such as sequence analysis, deletion/duplication analysis, and cytogenetics/ FISH analysis. Sequence analysis of exon 1 (TWIST1 coding region) provides a good method for detecting the frequency of mutations in the TWIST1 gene. These mutations include nonsense, missense, splice site mutation, and intragenic deletions/insertions. Deletion/duplication analysis identifies mutations in the TWIST1 gene that are not readily detected by sequence analysis. Common methods include PCR, multiplex ligation-dependent probe amplification (MLPA), and chromosomal microarray (CMA). Cytogenetic/FISH analysis attaches fluorescently labels DNA markers to a denatured chromosome and is then examined under fluorescent lighting, which reveals mutations caused by translocations or inversions involving 7p21. Occasionally, individuals with SCS have a chromosome translocation, inversion, or ring chromosome 7 involving 7p21 resulting in atypical findings, such as, increased developmental delay. Individuals with SCS, typically have normal brain functioning and rarely have mental impairments. For this reason, if an individual has both SCS and mental retardation, then they should have their TWIST1 gene screened more carefully because this is not a normal trait of SCS. Cytogenetic testing and direct gene testing can also be used to study gene/chromosome defects. Cytogenetic testing is the study of chromosomes to detect gains or losses of chromosomes or chromosome segments using fluorescent in situ hybridization (FISH) and/or comparative genomic hybridization (CGH). Direct gene testing uses blood, hair, skin, amniotic fluid, or other tissues in order to find genetic disorders. Direct gene testing can determine whether an individual has SCS by testing the individual's blood for mutations in the TWIST1 gene.
The overall diagnosis of SCS is primarily based on clinical findings and observations based on dysmorphology examination (assessing structural defects) and radiographic evaluation (X-rays, MRIs, and CT scans).
The clinical diagnosis of SCS is generally based on the presence of the following characteristics:
- Craniosynostosis
- Most commonly results from the premature fusion of the coronal suture, although any of the other sutures could result in this too.
- Craniosynostosis is typically accompanied by an odd skull shape (e.g., brachycephaly [short & broad] and acrocephaly [cone-shaped]).
- When determining whether an individual has SCS, a doctor will examine the patient's skull and will be able to tell if premature fusion has occurred based on the skull shape.
- Low-set hairline, facial asymmetry, ptosis (drooping eyelids), and strabismus (crossed/lazy eyes)
- Small ears with pronounced, bulging pinna
- Limb abnormalities including bunions (hallux valgus), short, partially webbed fingers, triangular-shaped epiphysis of the hallux (big toe), and duplicated distal phalanx of the hallux
There are multiple classifications for the triphalangeal thumb. The reason for these different classifications is the heterogeneity in appearance of the TPT.
The classification according to Wood describes the shape of the extra phalanx: delta (Fig. 4), rectangular or full phalanx (Table 1). With the classification made by Buck-Gramcko a surgical treatment can be chosen (Table 1). Buck-Gramcko differentiates between six different shapes of the extra phalanx and associated malformations.
Table 1: Classifications of Wood and Buck-Gramcko
Though a neuroma is a soft tissue abnormality and will not be visualized on standard radiographs, the first step in the assessment of forefoot pain is an X-ray in order to evaluate for the presence of arthritis and exclude stress fractures/reactions and focal bone lesions, which may mimic the symptoms of a neuroma. Ultrasound (sonography) accurately demonstrates thickening of the interdigital nerve within the web space of greater than 3mm, diagnostic of a Morton’s neuroma. This typically occurs at the level of the intermetatarsal ligament. Frequently, intermetatarsal bursitis coexists with the diagnosis. Other conditions that may also be visualized with ultrasound and can be clinically confused with a neuroma include synovitis/capsulitis from the adjacent metatarsophalangeal joint, stress fractures/reaction, and plantar plate disruption. MRI can similarly demonstrate the above conditions; however, in the setting where more than one abnormality coexists, ultrasound has the added advantage of determining which may be the source of the patient’s pain by applying direct pressure with the probe. Further to this, ultrasound can be used to guide treatment such as cortisone injections into the webspace, as well as alcohol ablation of the nerve.
In racquet nails (also known as brachyonychia, nail en raquette, and racquet thumb), the nail plate is flattened, the end of the thumb is widened and flattened, and the distal phalanx is abnormally short. In racquet nails, the width of the nail bed and nail plate is greater than their length. The condition is painless and asymptomatic.
Racquet nails usually occur on one or both thumbs, but may appear on all fingers and toes. It may be genetic, inherited as an autosomal-dominant trait, or acquired. Genetic disorders associated with racquet nail include Larsen syndrome, Brooke–Spiegler syndrome, Rubinstein–Taybi syndrome, Hajdu–Cheney syndrome, cartilage–hair hypoplasia, pycnodysostosis, acrodysostosis, and brachydactylia.
Acquired racquet nail is associated with acroosteolysis and psoriatic arthropathy. Acquired racquet nail may also be diagnostic of bone resorption in hyperparathyroidism.
Racquet nail often presents with other nail conditions such as onycholysis, koilonychia, pachyonychia, Muehrcke's lines, leuconychia, and half-and-half nails. Cosmetic surgery can be used to improve the appearance of the nails.
Treatment is symptomatic, often addressing indicators associated with peripheral pulmonary artery stenosis. Laryngotracheal calcification resulting in dyspnea and forceful breathing can be treated with bronchodilators including the short and long-acting β2-agonists, and various anticholinergics. Prognosis is good, yet life expectancy depends on the severity and extent of diffuse pulmonary and arterial calcification.
There is no standard treatment for the hand malformations in Apert due to the differences and severity in clinical manifestations in different patients. Every patient should therefore be individually approached and treated, aiming at an adequate balance between hand functionality and aesthetics.
However, some guidelines can be given depending on the severity of the deformities.
In general it is initially recommended to release the first and fourth interdigital spaces, thus releasing the border rays.
This makes it possible for the child to grasp things by hand, a very important function for the child's development. Later the second and third interdigital spaces have to be released.
Because there are three handtypes in Apert, all with their own deformities, they all need a different approach regarding their treatment:
- Type I hand usually needs only the interdigital web space release. First web release is rarely needed but often its deepening is necessary. Thumb clynodactyly correction will be needed.
- In type II hands it is recommended to release the first and fifth rays in the beginning, then the second and the third interdigital web spaces have to be freed. The clynodactyly of the thumb has to be corrected as well. The lengthening of the thumb phalanx may be needed, thus increasing the first web space. In both type I and type II, the recurrent syndactyly of the second web space will occur because of a pseudoepiphysis at the base of the index metacarpal. This should be corrected by later revisions.
- Type III hands are the most challenging to treat because of their complexity. First of all, it is advised to release the first and fourth webspace, thus converting it to type I hand. The treatment of macerations and nail-bed infections should also be done in the beginning. For increasing of the first web space, lengthening of the thumb can be done. It is suggested that in severe cases an amputation of the index finger should be considered. However, before making this decision, it is important to weigh the potential improvement to be achieved against the possible psychological problems of the child later due to the aesthetics of the hand. Later, the second and/or third interdigital web space should be released.
With growing of a child and respectively the hands, secondary revisions are needed to treat the contractures and to improve the aesthetics.
The goals of surgical treatment are: reducing length of the thumb, creating a good functioning, a stable and non deviated joint and improving the position of the thumb if necessary. Hereby improving function of the hand and thumb.
In general the surgical treatment is done for improvement of the thumb function. However, an extra advantage of the surgery is the improvement in appearance of the thumb. In the past, surgical treatment of the triphalangeal thumb was not indicated, but now it is generally agreed that operative treatment improves function and appearance. Because an operation was not indicated in the past, there’s still a population with an untreated triphalangeal thumb. The majority of this population doesn’t want surgery, because the daily functioning of the hand is good. The main obstacle for the untreated patients might not be the diminished function, but the appearance of the triphalangeal thumb.
The timing of surgery differs between Wood and Buck-Gramcko. Wood advises operation between the age of six months and two years, while Buck-Gramcko advises to operate for all indications before the age of six years.
- For TPT types I and II of the Buck-Gramcko classification, the surgical treatment typically consists of removing the extra phalanx and reconstructing the ulnar collateral ligament and the radial collateral ligament if necessary.
- For type III of Buck-Gramcko classification proposable surgical treatments:
- For type IV of Buck-Gramcko classification the surgical treatment typically consists of an osteotomy which reduces the middle phalanx and arthrodesis of the DIP. This gives a shortening of 1 to 1.5 cm. In most cases, this technique is combined with a shortening, rotation and palmar abduction osteotomy at metacarpal level to correct for position and length of the thumb. The extensor tendons and the intrinsic muscles are shortened as well.
- For type V of the Buck-Gramcko classification the surgical treatment proposably consists of a "pollicization". With a pollicization the malpositioned thumb is repositioned, rotated and shortened, the above-described rotation reduction osteotomy of the first metacarpal can be performed as well.
- For type VI of the Buck-Gramcko classification, the surgical treatment typically consists of removing the additional mostly hypoplastic thumb(s). Further procedures of reconstruction of the triphalangeal thumb are performed according to the shape of the extra phalanx as described above.
Diagnosis is often confirmed by several abnormalities of skeletal origin. There is a sequential order of findings, according to Cormode et al., which initiate in abnormal cartilage calcification and later brachytelephalangism. The uniqueness of brachytelephalangy in KS results in distinctively broadened and shortened first through fourth distal phalanges, while the fifth distal phalanx bone remains unaffected. Radiography also reveals several skeletal anomalies including facial hypoplasia resulting in underdevelopment of the nasal bridge with noticeably diminished alae nasi. In addition to distinguishable facial features, patients generally demonstrate shorter than average stature and general mild developmental delay.
In cases of a minor deviation of the wrist, treatment by splinting and stretching alone may be a sufficient approach in treating the radial deviation in RD. Besides that, the parent can support this treatment by performing passive exercises of the hand. This will help to stretch the wrist and also possibly correct any extension contracture of the elbow. Furthermore, splinting is used as a postoperative measure trying to avoid a relapse of the radial deviation.
Omphalocele has been described in two patients with Apert syndrome by Herman T.E. et al. (USA, 2010) and by Ercoli G. et al. (Argentina, 2014). An omphalocele is a birth defect in which an intestine or other abdominal organs are outside of the body of an infant because of a hole in the bellybutton area. However, the association between omphalocele and Apert syndrome is not confirmed yet, so additional studies are necessary.
Bunion can be diagnosed and analyzed by plain projectional radiography. The "hallux valgus angle" (HVA) is the angle between the longitudinal axes of the proximal phalanx and the first metatarsal bone of the big toe. It is considered abnormal if greater than 15–18°. The following HVA angles can also be used to grade the severity of hallux valgus:
- Mild: 15–20°
- Moderate: 21–39°
- Severe: ≥ 40°
The "intermetatarsal angle" (IMA) is the angle between the longitudinal axes of the first and second metatarsal bones, and is normally less than 9°. The IMA angle can also grade the severity of hallux valgus as:
- Mild: 9–11°
- Moderate: 12–17°
- Severe: ≥ 18°
Orthotics and corticosteroid injections are widely used conservative treatments for Morton’s neuroma. In addition to traditional orthotic arch supports, a small foam or fabric pad may be positioned under the space between the two affected metatarsals, immediately behind the bone ends. This pad helps to splay the metatarsal bones and create more space for the nerve so as to relieve pressure and irritation. It may however also elicit mild uncomfortable sensations of its own, such as the feeling of having an awkward object under one's foot. Corticosteroid injections can relieve inflammation in some patients and help to end the symptoms. For some patients, however, the inflammation and pain recur after some weeks or months, and corticosteroids can only be used a limited number of times because they cause progressive degeneration of ligamentous and tendinous tissues.
Sclerosing alcohol injections are an increasingly available treatment alternative if the above management approaches fail. Dilute alcohol (4%) is injected directly into the area of the neuroma, causing toxicity to the fibrous nerve tissue. Frequently, treatment must be performed 2–4 times, with 1–3 weeks between interventions. A 60–80% success rate has been achieved in clinical studies, equal to or exceeding the success rate for surgical neurectomy with fewer risks and less significant recovery. If done with more concentrated alcohol under ultrasound guidance, the success rate is considerably higher and fewer repeat procedures are needed.
Radio Frequency Ablation is also used in the treatment of Morton's Neuroma The outcomes appear to be equally or more reliable than alcohol injections especially if the procedure is done under ultrasound guidance.
If such interventions fail, patients are commonly offered surgery known as neurectomy, which involves removing the affected piece of nerve tissue. Postoperative scar tissue formation (known as stump neuroma) can occur in approximately 20%-30% of cases, causing a return of neuroma symptoms. Neurectomy can be performed using one of two general methods. Making the incision from the dorsal side (the top of the foot) is the more common method but requires cutting the deep transverse metatarsal ligament that connects the 3rd and 4th metatarsals in order to access the nerve beneath it. This results in exaggerated postoperative splaying of the 3rd and 4th digits (toes) due to the loss of the supporting ligamentous structure. This has aesthetic concerns for some patients and possible though unquantified long-term implications for foot structure and health. Alternatively, making the incision from the ventral side (the sole of the foot) allows more direct access to the affected nerve without cutting other structures. However, this approach requires a greater post-operative recovery time where the patient must avoid weight bearing on the affected foot because the ventral aspect of the foot is more highly enervated and impacted by pressure when standing. It also has an increased risk that scar tissue will form in a location that causes ongoing pain.
Cryogenic neuroablation is a lesser known alternative to neurectomy surgery. Cryogenic neuroablation (also known as cryo injection therapy, cryoneurolysis, cryosurgery or cryoablation) is a term that is used to describe the destruction of axons to prevent them from carrying painful impulses. This is accomplished by making a small incision (~3 mm) and inserting a cryoneedle that applies extremely low temperatures of between −50 °C to −70 °C to the nerve/neuroma. This results in degeneration of the intracellular elements, axons, and myelin sheath (which houses the neuroma) with wallerian degeneration. The epineurium and perineurium remain intact, thus preventing the formation of stump neuroma. The preservation of these structures differentiates cryogenic neuroablation from surgical excision and neurolytic agents such as alcohol. An initial study showed that cryo neuroablation is initially equal in effectiveness to surgery but does not have the risk of stump neuroma formation.
Recently, an increasing number of procedures are being performed at specialist centers which offer a range of procedures to treat Morton's neuroma under ultrasound guidance. Recent studies have shown excellent results for the treatment of Morton's neuroma with ultrasound guided sclerosing alcohol injections, ultrasound guided radiofrequency ablation, and ultrasound guided cryo-ablation.