Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In addition to genetic tests involving "PEX" genes, biochemical tests have proven highly effective for the diagnosis of infantile Refsum disease and other peroxisomal disorders. Typically, IRD patients show elevated very long chain fatty acids in their blood plasma. Cultured primarily skin fibroblasts obtained from patients show elevated very long chain fatty acids, impaired very long chain fatty acid beta-oxidation, phytanic acid alpha-oxidation, pristanic acid alpha-oxidation, and plasmalogen biosynthesis.
In addition to genetic tests involving the sequencing of "PEX" genes, biochemical tests have proven highly effective for the diagnosis of Zellweger syndrome and other peroxisomal disorders. Typically, Zellweger syndrome patients show elevated very long chain fatty acids in their blood plasma. Cultured primarily skin fibroblasts obtained from patients show elevated very long chain fatty acids, impaired very long chain fatty acid beta-oxidation, phytanic acid alpha-oxidation, pristanic acid alpha-oxidation, and plasmalogen biosynthesis.
The malabsorption resulting from lack of bile acid has resulted in elemental formula being suggested, which are low in fat with < 3% of calories derived from long chain triglycerides (LCT). However, reduced very long chain fatty acids (VLCFA) has not been shown to reduce blood VLCFA levels , likely because humans can endogenously produce most VLCFA. Plasma VLCFA levels are decreased when dietary VLCFA is reduced in conjunction with supplementation of Lorenzo’s oil (a 4:1 mixture of glyceryl trioleate and glyceryl trierucate) in X-ALD patients . Since docosahexaenoic acid (DHA) synthesis is impaired [59], DHA supplementation was recommended, but a placebo-controlled study has since showed no clinical efficacy . Due to the defective bile acid synthesis, fat soluble supplements of vitamins, A, D, E, and K are recommended.
Currently, there is no cure for infantile Refsum disease syndrome, nor is there a standard course of treatment. Infections should be guarded against to prevent such complications as pneumonia and respiratory distress. Other treatment is symptomatic and supportive. Patients show variable lifespans with some individuals surviving until adulthood and into old age.
Histopathology. The skin shows hyperkeratosis, hyper-granulosis, and acanthosis. Pathognomonic findings occur in the basal and suprabasal cells of the epidermis, which demonstrate variably sized vacuoles that contain lipid accumulations
The diagnosis of rhizomelic chondrodysplasia punctate can be based on genetic testing, as well as radiography results, plus an examination(physical) of the individual.
Mitochondrial diseases are usually detected by analysing muscle samples, where the presence of these organelles is higher. The most common tests for the detection of these diseases are:
1. Southern blot to detect big deletions or duplications
2. PCR and specific mutation analysis
3. Sequencing
Adult Refsum disease may be divided into the adult Refsum disease 1 and adult Refsum disease 2 subtypes. The former stems from mutations in the phytanoyl-CoA hydroxylase (PAHX aka PHYH) gene, on the PHYH locus at 10p13 on chromosome 6q22-24. It was initially believed this was the sole mutation; however 55% of cases are now attributed to mutations in other genes.
Refsum disease 2 stems from mutations in the peroxin 7 (PEX7) gene. This mutation on the PEX7 gene is also on chromosome 6q22-24, and was found in patients presenting with accumulation of phytanic acid with no PHYH mutation.
Adult Refsum disease should not be confused with infantile Refsum disease, a peroxisome biogenesis disorder resulting from deficiencies in the catabolism of very long chain fatty acids and branched chain fatty acids (such as phytanic acid) and plasmalogen biosynthesis.
Peroxisomal disorders represent a class of medical conditions caused by defects in peroxisome functions. This may be due to defects in single enzymes important for peroxisome function or in peroxins, proteins encoded by "PEX" genes that are critical for normal peroxisome assembly and biogenesis.
Peroxisome biogenesis disorders (PBDs) include the Zellweger syndrome spectrum (PBD-ZSD) and rhizomelic chondrodysplasia punctata type 1 (RCDP1). PBD-ZSD represents a continuum of disorders including infantile Refsum disease, neonatal adrenoleukodystrophy, and Zellweger syndrome. Collectively, PBDs are autosomal recessive developmental brain disorders that also result in skeletal and craniofacial dysmorphism, liver dysfunction, progressive sensorineural hearing loss, and retinopathy.
PBD-ZSD is most commonly caused by mutations in the "PEX1", "PEX6", "PEX10", "PEX12", and "PEX26" genes. This results in the over-accumulation of very long chain fatty acids and branched chain fatty acids, such as phytanic acid. In addition, PBD-ZSD patients show deficient levels of plasmalogens, ether-phospholipids necessary for normal brain and lung function.
RCDP1 is caused by mutations in the "PEX7" gene, which encodes the PTS2 receptor. RCDP1 patients can develop large tissue stores of branched chain fatty acids, such as phytanic acid, and show reduced levels of plasmalogens.
Management of rhizomelic chondrodysplasia punctate can include physical therapy, additionally orthopedic procedures improved function sometimes in affected people. However the prognosis is poor in this condition.
About 1 in 4,000 children in the United States will develop mitochondrial disease by the age of 10 years. Up to 4,000 children per year in the US are born with a type of mitochondrial disease. Because mitochondrial disorders contain many variations and subsets, some particular mitochondrial disorders are very rare.
The average number of births per year among women at risk for transmitting mtDNA disease is estimated to approximately 150 in the United Kingdom and 800 in the United States.
D-Bifunctional protein deficiency (officially called 17β-hydroxysteroid dehydrogenase IV deficiency) is an autosomal recessive peroxisomal fatty acid oxidation disorder. Peroxisomal disorders are usually caused by a combination of peroxisomal assembly defects or by deficiencies of specific peroxisomal enzymes. The peroxisome is an organelle in the cell similar to the lysosome that functions to detoxify the cell. Peroxisomes contain many different enzymes, such as catalase, and their main function is to neutralize free radicals and detoxify drugs, such as alcohol. For this reason peroxisomes are ubiquitous in the liver and kidney. D-BP deficiency is the most severe peroxisomal disorder, often resembling Zellweger syndrome.
Characteristics of the disorder include neonatal hypotonia and seizures, occurring mostly within the first month of life, as well as visual and hearing impairment. Other symptoms include severe craniofacial disfiguration, psychomotor delay, and neuronal migration defects. Most onsets of the disorder begin in the gestational weeks of development and most affected individuals die within the first two years of life.
The first suspicion of SPCD in a patient with a non-specific presentation is an extremely low plasma carnitine level. When combined with an increased concentration of carnitine in urine, the suspicion of SPCD can often be confirmed by either molecular testing or functional studies assessing the uptake of carnitine in cultured fibroblasts.
Identification of patients presymptomatically via newborn screening has allowed early intervention and treatment. Treatment for SPCD involves high dose carnitine supplementation, which must be continued for life. Individuals who are identified and treated at birth have very good outcomes, including the prevention of cardiomyopathy. Mothers who are identified after a positive newborn screen but are otherwise asymptomatic are typically offered carnitine supplementation as well. The long-term outcomes for asymptomatic adults with SPCD is not known, but the discovery of mothers with undiagnosed cardiomyopathy and SPCD has raised the possibility that identification and treatment may prevent adult onset manifestations.
Neonatal adrenoleukodystrophy is an inborn error of peroxisome biogenesis. It is part of the Zellweger spectrum. It has been linked with multiple genes (at least five) associated with peroxisome biogenesis, and has an autosomal recessive pattern of inheritance.
The most common clinical observations of patients suffering from D-bifunctional protein deficiency include hypotonia, facial and skull dysmorphism, neonatal seizures, and neuronal demyelination. High levels of branched fatty acids, such as pristinic acid, bile acid intermediates, and other D-BP substrates are seen to exist. Reduced pristinic acid β-oxidation is a common indicator of D-BP deficiency. D-BP can be distinguished from Zellweger Syndrome by normal plasmalogen synthesis. Recent studies in D-BP knockout mice show compensatory upregulation of other peroxisomal enzymes in absence of D-BP such as palmitoyl-CoA oxidase, peroxisomal thiolase, and branched chain acyl-CoA oxidase.
Malonyl-CoA decarboxylase deficiency (MCD), or Malonic aciduria is an autosomal-recessive metabolic disorder caused by a genetic mutation that disrupts the activity of Malonyl-Coa decarboxylase. This enzyme breaks down Malonyl-CoA (a fatty acid precursor and a fatty acid oxidation blocker) into Acetyl-CoA and carbon dioxide.
Diagnosis of 22q11.2 deletion syndrome can be difficult due to the number of potential symptoms and the variation in phenotypes between individuals. It is suspected in patients with one or more signs of the deletion. In these cases a diagnosis of 22q11.2DS is confirmed by observation of a deletion of part of the long arm (q) of chromosome 22, region 1, band 1, sub-band 2. Genetic analysis is normally performed using fluorescence "in situ" hybridization (FISH), which is able to detect microdeletions that standard karyotyping (e.g. G-banding) miss. Newer methods of analysis include Multiplex ligation-dependent probe amplification assay (MLPA) and quantitative polymerase chain reaction (qPCR), both of which can detect atypical deletions in 22q11.2 that are not detected by FISH. qPCR analysis is also quicker than FISH, which can have a turn around of 3 to 14 days.
A 2008 study of a new high-definition MLPA probe developed to detect copy number variation at 37 points on chromosome 22q found it to be as reliable as FISH in detecting normal 22q11.2 deletions. It was also able to detect smaller atypical deletions that are easily missed using FISH. These factors, along with the lower expense and easier testing mean that this MLPA probe could replace FISH in clinical testing.
Genetic testing using BACs-on-Beads has been successful in detecting deletions consistent with 22q11.2DS during prenatal testing. Array-comparative genomic hybridization (array-CGH) uses a large number of probes embossed in a chip to screen the entire genome for deletions or duplications. It can be used in post and pre-natal diagnosis of 22q11.2.
Fewer than 5% of individuals with clinical symptoms of the 22q11.2 deletion syndrome have normal routine cytogenetic studies and negative FISH testing. In these cases, atypical deletions are the cause. Some cases of 22q11.2 deletion syndrome have defects in other chromosomes, notably a deletion in chromosome region 10p14.
The diagnosis of the disease is mainly clinical (see diagnostic criteria). A laboratory workup is needed primarily to investigate for the presence of associated disorders (metabolic, autoimmune, and renal diseases).
- Every patient should have a fasting blood glucose and lipid profile, creatinine evaluation, and urinalysis for protein content at the first visit, after which he/she should have these tests on a regular basis.
- Although uncommon, lipid abnormalities can occur in the form of raised triglyceride levels and low high-density lipoprotein cholesterol levels.
- Patients usually have decreased serum C3 levels, normal levels of C1 and C4, and high levels of C3NeF (autoantibody), which may indicate the presence of renal involvement.
- Antinuclear antibodies (ANA) and antidouble-stranded deoxyribonucleic acid (DNA) antibodies have reportedly been observed in some patients with acquired partial lipodystrophy.
- A genetic workup should be performed if the familial form of lipodystrophy is suggested.
Laboratory work for associated diseases includes:
- Metabolic disease - fasting glucose, glucose tolerance test, lipid profile, and fasting insulin to characterize the insulin resistance state; free testosterone (in women) to look for polycystic ovary syndrome.
- Autoimmune disease - ANA, antidouble-stranded DNA, rheumatoid factor, thyroid antibodies, C3, and C3NeF.
As a confirmatory test, whole-body MRI usually clearly demonstrates the extent of lipodystrophy. MRI is not recommended on a routine basis.
The signs and symptoms of this disorder typically appear in early childhood. Almost all affected children have delayed development. Additional signs and symptoms can include weak muscle tone (hypotonia), seizures, diarrhea, vomiting, and low blood sugar (hypoglycemia). A heart condition called cardiomyopathy, which weakens and enlarges the heart muscle, is another common feature of malonyl-CoA decarboxylase deficiency.
Some common symptoms in Malonyl-CoA decarboxylase deficiency, such as cardiomyopathy and metabolic acidosis, are triggered by the high concentrations of Malonyl-CoA in the cytoplasm. High level of Malonyl-CoA will inhibits β-oxidation of fatty acids through deactivating the carrier of fatty acyl group, CPT1, and thus, blocking fatty acids from going into the mitochondrial matrix for oxidation.
A research conducted in Netherlands has suggested that carnitine supplements and a low fat diet may help to reduce the level of malonic acid in our body.
The addition of SPCD to newborn screening panels has offered insight into the incidence of the disorder around the world. In Taiwan, the incidence of SPCD in newborns was estimated to be approximately 1:67,000, while maternal cases were identified at a higher frequency of approximately 1:33,000. The increased incidence of SPCD in mothers compared to newborns is not completely understood. Estimates of SPCD in Japan have shown a similar incidence of 1:40,000. Worldwide, SPCD has the highest incidence in the relatively genetically isolated Faroe Islands, where an extensive screening program was instituted after the sudden death of two teenagers. The incidence in the Faroe Islands is approximately 1:200.
A review published in 2004, which was based on 35 patients seen by the respective authors over 8 years and also a literature review of 220 cases of acquired partial lipodystrophy (APL), proposed an essential diagnostic criterion. Based on the review and the authors experience, they proposed that APL presents as a gradual onset of bilaterally symmetrical loss of subcutaneous fat from the face, neck, upper extremities, thorax, and abdomen, in the "cephalocaudal" sequence, sparing the lower extremities. The median age of the onset of lipodystrophy was seven years. Several autoimmune diseases, in particular systemic lupus erythematosus and dermatomyositis, were associated with APL. The prevalence rates of diabetes mellitus and impaired glucose tolerance were 6.7% and 8.9%, respectively. Around 83% of APL patients had low complement 3 (C3) levels and the presence of polyclonal immunoglobulin C3 nephritic factor. About 22% of patients developed membranoproliferative glomerulonephritis (MPGN) after a median of about 8 years following the onset of lipodystrophy. Compared with patients without renal disease, those with MPGN had earlier age of onset of lipodystrophy (12.6 ± 10.3 yr vs 7.7 ± 4.4 yr, respectively; p < 0.001) and a higher prevalence of C3 hypocomplementemia (78% vs 95%, respectively; p = 0.02).
The adipose stores of the gluteal regions and lower extremities (including soles) tend to be either preserved or increased, particularly among women. Variable fat loss of the palms, but no loss of intramarrow or retro-orbital fat, has been demonstrated.
22q11.2 deletion syndrome was estimated to affect between one in 2000 and one in 4000 live births. This estimate is based on major birth defects and may be an underestimate, because some individuals with the deletion have few symptoms and may not have been formally diagnosed. It is one of the most common causes of mental retardation due to a genetic deletion syndrome.
The prevalence of 22q11.2DS has been expected to rise because of multiple reasons: (1) Thanks to surgical and medical advances, an increasing number of people are surviving heart defects associated with the syndrome. These individuals are in turn having children. The chances of a 22q11.2DS patient having an affected child is 50% for each pregnancy; (2) Parents who have affected children, but who were unaware of their own genetic conditions, are now being diagnosed as genetic testing become available; (3) Molecular genetics techniques such as FISH (fluorescence in situ hybridization) have limitations and have not been able to detect all 22q11.2 deletions. Newer technologies have been able to detect these atypical deletions.
Recently, the syndrome has been estimated to affect up to one in 2000 live births. Testing for 22q11.2DS in over 9500 pregnancies revealed a prevalence rate of 1/992.
Other diseases have similar characteristics to Treacher Collins syndrome. In the differential diagnosis, one should consider the acrofacial dysostoses. The facial appearance resembles that of Treacher Collins syndrome, but additional limb abnormalities occur in those persons. Examples of these diseases are Nager syndrome and Miller syndrome.
The oculoauriculovertebral spectrum should also be considered in the differential diagnosis. An example is hemifacial microsomia, which primarily affects development of the ear, mouth, and mandible. This anomaly may occur bilaterally. Another disease which belongs to this spectrum is Goldenhar syndrome, which includes vertebral abnormalities, epibulbar dermoids and facial deformities.
A temporal-bone CT using thin slices makes it possible to diagnose the degree of stenosis and atresia of the external auditory canal, the status of the middle ear cavity, the absent or dysplastic and rudimentary ossicles, or inner ear abnormalities such as a deficient cochlea. Two- and three-dimensional CT reconstructions with VRT and bone and skin-surfacing are helpful for more accurate staging and the three-dimensional planning of mandibular and external ear reconstructive surgery.