Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The PNMR refers to the number of perinatal deaths per 1,000 total births. It is usually reported on an annual basis. It is a major marker to assess the quality of health care delivery. Comparisons between different rates may be hampered by varying definitions, registration bias, and differences in the underlying risks of the populations.
PNMRs vary widely and may be below 10 for certain developed countries and more than 10 times higher in developing countries . The WHO has not published contemporary data.
Early neonatal mortality refers to a death of a live-born baby within the first seven days of life, while late neonatal mortality covers the time after 7 days until before 28 days. The sum of these two represents the neonatal mortality. Some definitions of the PNM include only the early neonatal mortality. Neonatal mortality is affected by the quality of in-hospital care for the neonate. Neonatal mortality and postneonatal mortality (covering the remaining 11 months of the first year of life) are reflected in the Infant Mortality Rate.
There have been many assessments of tests aimed at predicting pre-eclampsia, though no single biomarker is likely to be sufficiently predictive of the disorder. Predictive tests that have been assessed include those related to placental perfusion, vascular resistance, kidney dysfunction, endothelial dysfunction, and oxidative stress. Examples of notable tests include:
- Doppler ultrasonography of the uterine arteries to investigate for signs of inadequate placental perfusion. This test has a high negative predictive value among those individuals with a history of prior pre-eclampsia.
- Elevations in serum uric acid (hyperuricemia) is used by some to "define" pre-eclampsia, though it has been found to be a poor predictor of the disorder. Elevated levels in the blood (hyperuricemia) are likely due to reduced uric acid clearance secondary to impaired kidney function.
- Angiogenic proteins such as vascular endothelial growth factor (VEGF) and placental growth factor (PIGF) and anti-angiogenic proteins such as soluble fms-like tyrosine kinase-1 (sFlt-1) have shown promise for potential clinical use in diagnosing pre-eclampsia, though evidence is sufficient to recommend a clinical use for these markers.
- Recent studies have shown that looking for podocytes (specialized cells of the kidney) in the urine has the potential to aid in the prediction of preeclampsia. Studies have demonstrated that finding podocytes in the urine may serve as an early marker of and diagnostic test for preeclampsia.
Pre-eclampsia can mimic and be confused with many other diseases, including chronic hypertension, chronic renal disease, primary seizure disorders, gallbladder and pancreatic disease, immune or thrombotic thrombocytopenic purpura, antiphospholipid syndrome and hemolytic-uremic syndrome. It must be considered a possibility in any pregnant woman beyond 20 weeks of gestation. It is particularly difficult to diagnose when preexisting disease such as hypertension is present. Women with acute fatty liver of pregnancy may also present with elevated blood pressure and protein in the urine, but differ by the extent of liver damage. Other disorders that can cause high blood pressure include thyrotoxicosis, pheochromocytoma, and drug misuse.
Treatment of infants suffering birth asphyxia by lowering the core body temperature is now known to be an effective therapy to reduce mortality and improve neurological outcome in survivors, and hypothermia therapy for neonatal encephalopathy begun within 6 hours of birth significantly increases the chance of normal survival in affected infants.
There has long been a debate over whether newborn infants with birth asphyxia should be resuscitated with 100% oxygen or normal air. It has been demonstrated that high concentrations of oxygen lead to generation of oxygen free radicals, which have a role in reperfusion injury after asphyxia. Research by Ola Didrik Saugstad and others led to new international guidelines on newborn resuscitation in 2010, recommending the use of normal air instead of 100% oxygen.
IH/BA is also a causitive factor in cardiac and circulatory birth defects the sixth most expensive condition, as well as premature birth and low birth weight the second most expensive and it is one of the contributing factors to infant respiratory distress syndrome (RDS) also known as hyaline membrane disease, the most expensive medical condition to treat and the number one cause of infant mortality.
This is equivalent of zero intervention. It has been associated with almost 100% mortality rate of one or all fetuses. Exceptions to this include patients that are still in Stage 1 TTTS and are past 22 weeks gestation.
Bed rest has not been found to improve outcomes and therefore is not typically recommended.
Mothers whose fetus is diagnosed with intrauterine growth restriction by ultrasound can use management strategies based on monitoring and delivery methods. One of these monitoring techniques is an umbilical artery Doppler. This method has been shown to decrease risk of morbidity and mortality before and after parturition among IUGR patients.
Time of delivery is also a management strategy and is based on parameters collected from the umbilical artery doppler. Some of these include: pulsatility index, resistance index, and end-diastolic velocities, which are measurements of the fetal circulation.
A staging system proposed by fetal surgeon Dr. Ruben Quintero is commonly used to classify the severity of TTTS.
Stage I: A small amount of amniotic fluid (oligohydramnios) is found around the donor twin and a large amount of amniotic fluid (polyhydramnios) is found around the recipient twin.
Stage II: In addition to the description above, the ultrasound is not able to identify the bladder in the donor twin.
Stage III: In addition to the characteristics of Stages I and II, there is abnormal blood flow in the umbilical cords of the twins.
Stage IV: In addition to all of the above findings, the recipient twin has swelling under the skin and appears to be experiencing heart failure (fetal hydrops).
Stage V: In addition to all of the above findings, one of the twins has died. This can happen to either twin. The risk to either the donor or the recipient is roughly equal & is quite high in Stage II or higher TTTS.
The Quintero staging does not provide information about prognosis, and other staging systems have been proposed.
A study by the Agency for Healthcare Research and Quality (AHRQ) found that of the 3.8 million births that occurred in the United States in 2011, approximately 6.1% (231,900) were diagnosed with low birth weight (<2,500 g). Approximately 49,300 newborns (1.3%) weighed less than 1,500 grams (VLBW). Infants born at low birth weight are at a higher risk for developing neonatal infection.
Some disorders and conditions can mean that pregnancy is considered high-risk (about 6-8% of pregnancies in the USA) and in extreme cases may be contraindicated. High-risk pregnancies are the main focus of doctors specialising in maternal-fetal medicine.
Serious pre-existing disorders which can reduce a woman's physical ability to survive pregnancy include a range of congenital defects (that is, conditions with which the woman herself was born, for example, those of the heart or , some of which are listed above) and diseases acquired at any time during the woman's life.
LBW is closely associated with fetal and Perinatal mortality and Morbidity, inhibited growth and cognitive development, and chronic diseases later in life. At the population level, the proportion of babies with a LBW is an indicator of a multifaceted public-health problem that includes long-term maternal malnutrition, ill health, hard work and poor health care in pregnancy. On an individual basis, LBW is an important predictor of newborn health and survival and is associated with higher risk of infant and childhood mortality.
Low birth weight constitutes as sixty to eighty percent of the infant mortality rate in developing countries. Infant mortality due to low birth weight is usually directly causal, stemming from other medical complications such as preterm birth, poor maternal nutritional status, lack of prenatal care, maternal sickness during pregnancy, and an unhygienic home environment. According to an analysis by University of Oregon, reduced brain volume in children is also tied to low birth-weight.
IUGR affects 3-10% of pregnancies. 20% of stillborn infants have IUGR. Perinatal mortality rates are 4-8 times higher for infants with IUGR, and morbidity is present in 50% of surviving infants.
According to the theory of thrifty phenotype, intrauterine growth restriction triggers epigenetic responses in the fetus that are otherwise activated in times of chronic food shortage. If the offspring actually develops in an environment rich in food it may be more prone to metabolic disorders, such as obesity and type II diabetes.
A Dutch 2010 research showed that "low-risk" pregnancy in the Netherlands may actually carry a higher risk of perinatal death than a "high-risk" pregnancy.
LGA and macrosomia cannot be diagnosed until after birth, as it is impossible to accurately estimate the size and weight of a child in the womb. Babies that are large for gestational age throughout the pregnancy may be suspected because of an ultrasound, but fetal weight estimations in pregnancy are quite imprecise. For non-diabetic women, ultrasounds and care providers are equally inaccurate at predicting whether or not a baby will be big. If an ultrasound or a care provider predicts a big baby, they will be wrong half the time.
Although big babies are born to only 1 out of 10 women, the 2013 Listening to Mothers Survey found that 1 out of 3 American women were told that their babies were too big. In the end, the average birth weight of these suspected “big babies” was only . In the end, care provider concerns about a suspected big baby were the fourth-most common reason for an induction (16% of all inductions), and the fifth-most common reason for a C-section (9% of all C-sections). This treatment is not based on current best evidence.
Research has consistently shown that, as far as birth complications are concerned, the care provider’s perception that a baby is big is more harmful than an actual big baby by itself. In a 2008 study, researchers compared what happened to women who were suspected of having a big baby to what happened to women who were not suspected of having a big baby—but who ended up having one. In the end, women who were suspected of having a big baby (and actually had one) had a triple in the induction rate, more than triple the C-section rate, and a quadrupling of the maternal complication rate, compared to women who were not suspected of having a big baby but who had one anyway.
Complications were most often due to C-sections and included bleeding (hemorrhage), wound infection, wound separation, fever, and need for antibiotics. There were no differences in shoulder dystocia between the two groups. In other words, when a care provider “suspected” a big baby (as compared to not knowing the baby was going to be big), this tripled the C-section rates and made mothers more likely to experience complications, without improving the health of babies.
Fetuses with polyhydramnios are at risk for a number of other problems including cord prolapse, placental abruption, premature birth and perinatal death. At delivery the baby should be checked for congenital abnormalities.
A 2008 bulletin from the World Health Organization estimates that 900,000 total infants die each year from birth asphyxia, making it a leading cause of death for newborns.
In the United States, intrauterine hypoxia and birth asphyxia was listed as the tenth leading cause of neonatal death.
There is current controversy regarding the medicolegal definitions and impacts of birth asphyxia. Plaintiff's attorneys often take the position that birth asphyxia is often preventable, and is often due to substandard care and human error. They have utilized some studies in their favor that have demonstrated that, "...although other potential causes exist, asphyxia and hypoxic-ischemic encephalopathy affect a substantial number of babies, and they are preventable causes of cerebral palsy." The American Congress of Obstetricians and Gynecologists disputes that conditions such as cerebral palsy are usually attributable to preventable causes, instead associating them with circumstances arising prior to birth and delivery.
Previa can be confirmed with an ultrasound. Transvaginal ultrasound has superior accuracy as compared to transabdominal one, thus allowing measurement of distance between placenta and cervical os. This has rendered traditional classification of placenta previa obsolete.
False positives may be due to following reasons:
- Overfilled bladder compressing lower uterine segment
- Myometrial contraction simulating placental tissue in abnormally low location
- Early pregnancy low position, which in third trimester may be entirely normal due to differential growth of the uterus.
In such cases, repeat scanning is done after an interval of 15–30 minutes.
In parts of the world where ultrasound is unavailable, it is not uncommon to confirm the diagnosis with an examination in the surgical theatre. The proper timing of an examination in theatre is important. If the woman is not bleeding severely she can be managed non-operatively until the 36th week. By this time the baby's chance of survival is as good as at full term.
History may reveal antepartum hemorrhage. Abdominal examination usually finds the uterus non-tender, soft and relaxed. Leopold's Maneuvers may find the fetus in an oblique or breech position or lying transverse as a result of the abnormal position of the placenta. Malpresentation is found in about 35% cases. Vaginal examination is avoided in known cases of placenta previa.
Having one or more parents in the 90th percentile for size is likely to lead to a false positive concern for LGA.
One of the primary risk factors of LGA is poorly-controlled diabetes, particularly gestational diabetes (GD), as well as preexisting diabetes mellitus (DM) (preexisting type 2 is associated more with macrosomia, while preexisting type 1 can be associated with microsomia). This increases maternal plasma glucose levels as well as insulin, stimulating fetal growth. The LGA newborn exposed to maternal DM usually only has an increase in weight. LGA newborns that have complications other than exposure to maternal DM present with universal measurements above the 90th percentile.
With treatment, maternal mortality is about 1 percent, although complications such as placental abruption, acute renal failure, subcapsular liver hematoma, permanent liver damage, and retinal detachment occur in about 25% of women. Perinatal mortality (stillbirths plus death in infancy) is between 73 and 119 per 1000 babies of woman with HELLP, while up to 40% are small for gestational age. In general, however, factors such as gestational age are more important than the severity of HELLP in determining the outcome in the baby.
HELLP syndrome can be difficult to diagnose due to the variability of symptoms among pregnant women (frequently a woman will have no symptoms other than general abdominal pain), and early diagnosis is key in reducing morbidity. If not treated in a timely manner, a woman can become critically ill or die due to liver rupture/hemorrhage or cerebral edema.
In a woman with possible HELLP syndrome, a batch of blood tests is performed: a full blood count, a coagulation panel, liver enzymes, electrolytes, and renal function studies. Often, fibrin degradation product levels are determined, which can be elevated. Lactate dehydrogenase is a marker of hemolysis and is elevated (>600 U/l). Proteinuria is present but can be mild.
In one 1995 study, a positive D-dimer test in the presence of pre-eclampsia was reported to be predictive of woman who will develop HELLP syndrome.
The diagnostic criteria for and subtypes of HELLP vary across studies, which "makes comparison of published data difficult." The classifications include:
- Criteria developed at the University of Tennessee:
- HELLP is characterized by hemolysis on peripheral blood smear with serum lactate dehydrogenase >600 IU/l; serum aspartate aminotransferase >70 IU/l; and platelet count <100,000/μl.
- Partial HELLP syndrome is characterized by one or two features of HELLP.
- Criteria developed at the University of Mississippi, as of 1999:
- "The diagnosis of HELLP syndrome required the presence of thrombocytopenia (perinatal platelet nadir ≤150,000 cells/μl), evidence of hepatic dysfunction (increased aspartate aminotransferase level of ≥40 IU/l, increased alanine aminotransferase level of ≥40 IU/l, or both, with increased lactate dehydrogenase (LDH) level of ≥600 IU/l), and evidence of hemolysis (increased LDH level, progressive anemia)..."
- "Class 1 HELLP syndrome featured severe thrombocytopenia with a platelet nadir of ≤50,000 cells/μl, class 2 HELLP syndrome featured moderate thrombocytopenia with a platelet nadir between >50,000 and ≤100,000 cells/μl, and class 3 HELLP syndrome featured mild thrombocytopenia with a platelet nadir between >100,000 and ≤150,000 cells/μl."
- Criteria developed at the University of Mississippi, as of 2006: "For a patient to merit a diagnosis of HELLP syndrome, class 1 requires severe thrombocytopenia (platelets ≤50,000/μl), evidence of hepatic dysfunction (AST [aspartate aminotransferase] and/or ALT [alanine aminotransferase] ≥70 IU/l), and evidence suggestive of hemolysis (total serum LDH ≥600 IU/l); class 2 requires similar criteria except thrombocytopenia is moderate (>50,000 to ≤100,000/μl); and class 3 includes patients with mild thrombocytopenia (platelets >100,000 but ≤150,000/μl), mild hepatic dysfunction (AST and/or ALT ≥40 IU/l), and hemolysis (total serum LDH ≥600 IU/L)."
Neonatal sepsis of the newborn is an infection that has spread through the entire body. The inflammatory response to this systematic infection can be as serious as the infection itself. In infants that weigh under 1500 g, sepsis is the most common cause of death. Three to four percent of infants per 1000 births contract sepsis. The mortality rate from sepsis is near 25%. Infected sepsis in an infant can be identified by culturing the blood and spinal fluid and if suspected, intravenous antibiotics are usually started. Lumbar puncture is controversial because in some cases it has found not to be necessary while concurrently, without it estimates of missing up to one third of infants with meningitis is predicted.
Cord blood gas analysis can be used to determine if there is perinatal hypoxia/asphyxia, which are potential causes of hypoxic-ischemic encephalopathy or cerebral palsy, and give insight into causes of intrapartum fetal distress. Cord blood gas analysis is indicated for high-risk pregnancies, in cases where C-sections occurred due to fetal compromise, if there were abnormal fetal heart rate patterns, Apgar scores of 3 or lower, intrapartum fever, or multifetal gestation.
Evidence of brain injury related to the hypoxic-ischemic events that cause neonatal encephalopathy can be seen with brain MRIs, CTs, magnetic resonance spectroscopy imaging or ultrasounds.
Neonatal encephalopathy may be assessed using Sarnat staging.