Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Feeding the lawn with a nitrogen based fertilizer will help the grass recover and help prevent future attacks.
Red Thread can be treated using a fungicide that contains benomyl or carbendazim. The infection will rarely kill the grass, usually only affecting the blades and not the roots, and the lawn should recover in time.
References
1) Ryzin, Benjamin Van. “Red Thread.” "Wisconsin Horticulture", 23 June 2013, hort.uwex.edu/articles/red-thread/
2) Harmon, Philip, and Richard Latin. “Red Thread.” "Purdue Extension", Dec. 2009, www.extension.purdue.edu/extmedia/bp/bp-104-w.pdf.
3) “Red Thread.” "Plant Protection", NuTurf, nuturf.com.au/wp-content/uploads/sites/2/2015/09/Red-Thread-Info.pdf.
4) “Suppression of Soil-Borne Plant Diseases with Composts: A Review.” "Taylor & Francis", www.tandfonline.com/doi/abs/10.1080/09583150400015904
5) “Red Thread — Laetisaria Fuciformis.” "Red Thread (Laetisaria Fuciformis) - MSU Turf Diseases.net - Disease Identification and Information. A Resource Guide from the Dept. of Plant Pathology at Michigan State University", www.msuturfdiseases.net/details/_/red_thread_14/.
6) “Lawn and Turf-Red Thread.” "Pacific Northwest Pest Management Handbooks", OSU Extension Service - Extension and Experiment Station Communications, 4 Apr. 2017, pnwhandbooks.org/plantdisease/host-disease/lawn-turf-red-thread.
Herbicide applications aimed to reduce ryegrass population have been successful in reducing the risk of ARGT but have undesirable effects such as rapid reduction in pasture productivity and increase in ryegrass herbicide resistance.
A recently released biological control agent, the twist fungus, has been demonstrated to be effective in reducing the risk ARGT without the need of controlling ryegrass. The first use of the twist fungus inoculum was in 1997.
http://www.lawnandmower.com/red-thread-disease.aspx
http://www.grassclippings.co.uk/RedThread.pdf
Thousand cankers disease can be spread by moving infected black walnut wood. Trees intended for shipment should be inspected for dieback and cankers and galleries after harvest. G. morbidia or the walnut twig beetle ("Pityophthorus juglandis") are not currently known to be moved with walnut seed . There is currently no chemical therapy or prevention available for the disease making it difficult to control the spread of the disease from the west to the eastern united states. Wood from infected trees can still be used for commercial value, but safety measures such as removing the bark, phloem, and cambium to reduce the risk of spreading the disease with shipment. Quarantines have been put in place in some states to reduce the potential movement of fungus or beetle from that region. On May 17th, 2010, the Director of the Michigan Department of Agriculture issued a quarantine from affected states to protect Michigan’s black walnut ecology and production. Contacting the appropriate entities about possible infections is important to stopping or slowing the spread of thousand cankers disease.
Perennial ryegrass staggers is poisoning by peramine, lolitrem B, and other toxins that are contained in perennial ryegrass ("Lolium perenne"), and produced by the endophyte fungus "Neotyphodium lolii" which can be present in all parts of the grass plant, but tends to be concentrated in the lower part of the leaf sheaths, the flower stalks and seeds. This condition can affect horses, cattle, sheep, farmed deer and llamas. It regularly occurs in New Zealand and is known spasmodically from Australia, North and South America, and Europe.
ARGT was first recorded in vicinity of Black Springs, South Australia, in the 1950s and then near Gnowangerup, Western Australia, in the 1960s. The disease has spread rapidly and approximately 40,000 to 60,000 square kilometres of farmland in Western Australia, and similar areas in South Australia are now infested by the ARGT-causing organisms. Most ARGT-related livestock losses occur during October to January, but losses have been recorded as late as April.
Recovery usually occurs when the animal is removed from the contaminated pasture. The chief danger to stock at this stage is caused by their lack of coordination, which may result in accidental death by falling in awkward places such as ditches and ponds.
Bacterial leaf streak of wheat is not easily prevented, but can be controlled with clean seed and resistance. Some foliar products, such as pesticides and antibiotic compounds, have been tested for effectiveness, but have proven to have insignificant outcomes on the bacterial pathogen.
Using clean seed, with little infection, has yielded effective results for researchers and producers. The pathogen, being seed-borne, can be controlled with the elimination of contaminated seed, however, clean seed is not always a sure solution. Because the pathogen may still live in the soil, the use of clean seed is only effective if both the soil and seed are free of the pathogen. Currently, there are no successful seed treatments available for producers to apply to wheat seed for the pathogen.
Variety resistance is another option for control of the disease. Using cultivars such as Blade, Cromwell, Faller, Howard or Knudson, which are resistant to BLS may reduce the impact of the disease and potentially break the disease cycle. Avoiding susceptible cultivars such as Hat Trick, Kelby, and Samson may also reduce the presence of the disease and reduce the amount of bacterial residue in the soil. Using integrated pest management techniques such as tillage to turn over the soil and bury the infection as well as rotating crops may assist with disease management, but are not a definitive control methods. Depending on conditions, the bacteria may survive for up to 81 months. Because the bacteria is moisture driven, irrigation may also increase the risks of BLS infection.
Konzo can be prevented by use of the “wetting method,” which is used to remove residual cyanogens from cassava flour, as an additional processing method. Cassava flour is placed in a bowl and the level marked on the inside of the bowl. Water is added with mixing until the height of the wet flour comes up to the mark. The wet flour is placed in a thin layer on a mat for 2 hours in the sun or 5 hours in the shade to allow the escape of hydrogen cyanide produced by the breakdown of linamarin by the enzyme linamarase. The damp flour is then cooked in boiling water in the traditional way to produce a thick porridge called “fufu” or “ugali”, which is flavoured by some means such as a sauce. The wetting method is accepted by rural women because it requires little extra work or equipment and produces fufu which is not bitter, because the bitter tasting linamarin has gone.
In 2010 the wetting method was taught to the women in Kay Kalenge village, Popokabaka Health Zone, Bandundu Province, DRC, where there were 34 konzo cases. The women used the method and during the intervention there were no new konzo cases and the urinary thiocyanate content of the school children fell to safe levels. Konzo had been prevented for the first time ever in the same health zone in which it had first been discovered by Dr Trolli in 1938. Fourteen months after the intervention ceased the village was visited again. It was found that there were no new cases of konzo, the school children had low urinary thiocyanate levels, the wetting method was still being used and it had spread by word of mouth to three nearby villages. It is important to teach the women that konzo is due to a poison present in their food, to get them to regularly use the wetting method and posters are available in 13 different languages as a teaching aid as an additional method to remove residual cyanogens.
The wetting method has now been used in 13 villages in DRC with nearly 10000 people. The time of the intervention has been reduced from 18 months in the first intervention, to 12 months in the second intervention, to 9 months in the third and fourth interventions. This has reduced the cost per person of the intervention to prevent konzo by removing cyanogens from cassava flour, to $16 per person. This targeted method to reduce cyanide intake is much cheaper and more effective in preventing konzo than broad based interventions.
Although no treatment has been found it has been shown that affected individuals benefit considerably from rehabilitation and use of adequate walking aids. In the Central African Republic some children have been operated with an elongation of the Achilles tendon which improved the position of the foot but the long term consequence remains uncertain.
The genus Geosmithia (Ascomycota: Hypocreales) are generally saprophytic fungi affecting hardwoods. As of its identification in 2010, the species G. morbida is the first documented as a plant pathogen. The walnut twig beetle ("Pityophthorus juglandis") carries the mycelium and conidia of the fungus as it burrows into the tree. The beetle is currently only found in warmer climates, allowing for transmission of the fungus throughout the year. Generations of the beetle move to and from black walnut trees carrying the fungus as they create galleries, the adults typically moving horizontally, and the larvae moving vertically with the grain. As they move through the wood, the beetles deposit the fungus, which is then introduced into the phloem; cankers then develop around the galleries, quickly girdling the tree. The fungus has not been found to provide any value to the beetle. A study done by Montecchio and Faccoli in Italy in 2014 found that no fungal fruiting bodies were found around or on the cankers but in the galleries. Mycelium, and sometimes conidiophores and conidia were observed in the galleries as well. No sexual stage of the fungus has currently been found.
The disease can tolerate warm or freezing temperature, but favorable conditions for the disease include wet and humid weather. Irrigated fields provide a favorable environment for the disease. The disease has become quite prevalent in semi-tropical regions, but can found all over the world where wheat is grown. Strong winds that blow soils help contribute to the spread of disease. When the spread is initiated by wind blown soil particles, symptoms will be found most readily towards the edges of the field.
Magnesium supplements are used to prevent the disease when ruminants, for obvious economic reasons, must have access to dangerous pastures.
The affected animal should be left in the pasture, and not forced to come back to stall because excitation can darken the prognosis, even after adequate treatment.
Intravenous mixed calcium and magnesium injection are used. Subcutaneous injection of magnesium sulfate (200 ml of 50% solution) is also recommended.
Zamia staggers is a fatal nervous disease affecting cattle where they browse on the leaves or fruit of cycads—in particular, those of the genus Zamia (thus the name). It is characterised by irreversible paralysis of the hind legs because of the degeneration of the spinal cord. It is caused by the toxins cycasin and macrozamin, β-glycosides (the sugars of which are glucose and primeverose, respectively) of methylazoxymethanol (MAM), and which are found in all cycad genera.
Following ingestion the sugar is removed by bacterial glycosidase in the gut, with the MAM being absorbed. The metabolized toxin produces tumours of the liver, kidney, intestine and brain after a latent period which may be a year or longer. The disease has been known in Australia since the 1860s and was the subject of a Queensland Government investigation during the 1890s.
Diagnosis of aquagenic urticaria will begin with an evaluation of the patient's clinical history looking for any signs of what might be causing this severe reaction. The patient will then be put to a water treatment test where water will be applied to the upper body for 30 minutes. Water may be placed directly on the skin or a soaked paper towel may be applied. In many cases distilled water, tap water and saline will be used to check for a difference in reaction. After this is removed the skin will be checked for a reaction for the next 10–15 minutes. Because aqugenic urticaria frequently accompanies other types of physical urticaraia, the doctor may perform tests to check for these other conditions. An ice cube may be placed on the forearm for a few minutes to check for cold urticarial, exposure to a hot bath will be used to check for Cholinergis uticaria and the lesions will be inspected to determine the root cause of their appearance.
Evaluations for aquagenic urticaria consist of a clinical history and water challenge test. The standard test for aquagenic urticaria is application of a 35 °C water compress to the upper body for 30 minutes. Water of any temperature can provoke aquagenic urticaria; however, keeping the compress at a similar temperature to that of the human body (37 °C) avoids confusion with cold-induced or local heat urticaria. In addition, a forearm or hand can be immersed in water of varying temperatures. A diagnosis of aquagenic urticaria requires exclusion of other types of physical urticaria, so an exercise test and ice cube test should be performed to rule out other types of physical urticarial. aquagenic urticaria should be distinguished from aquagenic pruritus, in which brief contact with water evokes intense itching without wheals or erythema. The pathogenesis of aquagenic urticaria is not fully known; however, several mechanisms have been proposed. Interaction with water with a component in or on the stratum corneum or sebum, generating a toxic compound, has been suggested. Absorption of this substance would exert an effect of perifollicular mast cell degranulation with release of histamine.
Effective management of allergic diseases relies on the ability to make an accurate diagnosis. Allergy testing can help confirm or rule out allergies. Correct diagnosis, counseling, and avoidance advice based on valid allergy test results reduces the incidence of symptoms and need for medications, and improves quality of life. To assess the presence of allergen-specific IgE antibodies, two different methods can be used: a skin prick test, or an allergy blood test. Both methods are recommended, and they have similar diagnostic value.
Skin prick tests and blood tests are equally cost-effective, and health economic evidence shows that both tests were cost-effective compared with no test. Also, early and more accurate diagnoses save cost due to reduced consultations, referrals to secondary care, misdiagnosis, and emergency admissions.
Allergy undergoes dynamic changes over time. Regular allergy testing of relevant allergens provides information on if and how patient management can be changed, in order to improve health and quality of life. Annual testing is often the practice for determining whether allergy to milk, egg, soy, and wheat have been outgrown, and the testing interval is extended to 2–3 years for allergy to peanut, tree nuts, fish, and crustacean shellfish. Results of follow-up testing can guide decision-making regarding whether and when it is safe to introduce or re-introduce allergenic food into the diet.
An allergy blood test is quick and simple, and can be ordered by a licensed health care provider ("e.g.", an allergy specialist), GP, or PED. Unlike skin-prick testing, a blood test can be performed irrespective of age, skin condition, medication, symptom, disease activity, and pregnancy. Adults and children of any age can take an allergy blood test. For babies and very young children, a single needle stick for allergy blood testing is often more gentle than several skin tests.
An allergy blood test is available through most laboratories. A sample of the patient's blood is sent to a laboratory for analysis, and the results are sent back a few days later. Multiple allergens can be detected with a single blood sample. Allergy blood tests are very safe, since the person is not exposed to any allergens during the testing procedure.
The test measures the concentration of specific IgE antibodies in the blood. Quantitative IgE test results increase the possibility of ranking how different substances may affect symptoms. A rule of thumb is that the higher the IgE antibody value, the greater the likelihood of symptoms. Allergens found at low levels that today do not result in symptoms can nevertheless help predict future symptom development. The quantitative allergy blood result can help determine what a patient is allergic to, help predict and follow the disease development, estimate the risk of a severe reaction, and explain cross-reactivity.
A low total IgE level is not adequate to rule out sensitization to commonly inhaled allergens. Statistical methods, such as ROC curves, predictive value calculations, and likelihood ratios have been used to examine the relationship of various testing methods to each other. These methods have shown that patients with a high total IgE have a high probability of allergic sensitization, but further investigation with allergy tests for specific IgE antibodies for a carefully chosen of allergens is often warranted.
Laboratory methods to measure specific IgE antibodies for allergy testing include enzyme-linked immunosorbent assay (ELISA, or EIA), radioallergosorbent test (RAST) and fluorescent enzyme immunoassay (FEIA).
The more poignant part of this disorder is the lack of desensitization for water and aqua intile injection as allergen even on repeated exposure. Avoidance of allergen as a general principle in any allergic disorder necessitates the evasion of water exposure. Topical application of antihistamines like 1% diphenhydramine before water exposure is reported to reduce the hives. Oil in water emulsion creams, petrolatum as barrier agents for water can be used prior to shower or bath with good control of symptoms. Therapeutic effectiveness of various classes of drugs differs from case to case.
Allergy testing may reveal the specific allergens to which an individual is sensitive. Skin testing is the most common method of allergy testing. This may include a patch test to determine if a particular substance is causing the rhinitis, or an intradermal, scratch, or other test. Less commonly, the suspected allergen is dissolved and dropped onto the lower eyelid as a means of testing for allergies. This test should be done only by a physician, since it can be harmful if done improperly. In some individuals not able to undergo skin testing (as determined by the doctor), the RAST blood test may be helpful in determining specific allergen sensitivity. Peripheral eosinophilia can be seen in differential leukocyte count.
Allergy testing can either show allergies that are not actually causing symptoms or miss allergies that do cause symptoms. The intradermal allergy test is more sensitive than the skin prick test but is more often positive in people that do not have symptoms to that allergen.
Even if a person has negative skin-prick, intradermal and blood tests for allergies, he/she may still have allergic rhinitis, from a local allergy in the nose. This is called local allergic rhinitis. Specialized testing is necessary to diagnose local allergic rhinitis.
Many canine skin disorders can have a basis in poor nutrition. The supplementation of both omega fatty acids, 3 and 6, have been shown to mediate the inflammatory skin response seen in chronic diseases. Omega 3 fatty acids are increasingly being used to treat pruritic, irritated skin. A group of dogs supplemented with omega 3 fatty acids (660 mg/kg [300 mg/lb] of body weight/d) not only improved the condition of their pruritus, but showed an overall improvement in skin condition. Furthermore, diets lacking in essential fatty acids usually present as matted and unkept as the first sign of a deficiency. Eicosapentaenoic acid (EPA), a well known omega 3, works by preventing the synthesis of another omega metabolite known as arachidonic acid. Arachidonic acid is an omega 6, making it pro-inflammatory. Though not always the case, omega 6 fatty acids promote inflammation of the skin which in turn reduces overall appearance and health. There are skin benefits of both these lipids, as a deficiency in omega 6s leads to a reduced ability to heal and a higher risk of infection, which also diminishes skin health. Lipids in general benefit skin health of dogs, as they nourish the epidermis and retain moisture to prevent dry, flaky skin.
Atopy is a hereditary and chronic (lifelong) allergic skin disease. Signs usually begin between 6 months and 3 years of age, with some breeds of dog, such as the Golden Retriever showing signs at an earlier age. Dogs with atopic dermatitis are itchy, especially around the eyes, muzzle, ears and feet. In severe cases the irritation is generalised. If the allergens are seasonal, the signs of irritation are similarly seasonal. Many dogs with house dust mite allergy have perennial disease. Some of the allergens associated with atopy in dogs include pollens of trees, grasses and weeds, as well as molds and House dust mite. Ear and skin infections with the bacteria "Staphylococcus pseudintermedius" and the yeast "Malassezia pachydermatis" are common secondary to atopic dermatitis.
Food allergy can be associated with identical signs and some authorities consider food allergy to be a type of atopic dermatitis.
Diagnosis of atopic dermatitis is by elimination of other causes of irritation including fleas, scabies and other parasites such as Cheyletiella and lice. Food allergy can be identified through the use of elimination diet trials in which a novel or hydrolysed protein diet is used for a minimum of 6 weeks and allergies to aeroallergens can be identified using intradermal allergy testing and/or blood testing (allergen-specific IgE ELISA).
Treatment includes avoidance of the offending allergens if possible, but for most dogs this is not practical or effective. Other treatments modulate the adverse immune response to allergens and include antihistamines, steroids, ciclosporin and immunotherapy (a process in which allergens are injected to try to induce tolerance). In many cases shampoos, medicated wipes and ear cleaners are needed to try to prevent the return of infections.
New research into T-cell receptor peptides and their effects on dogs with severe, advanced atopic dermatitis are being investigated.
One way to prevent allergic rhinitis is to wear a respirator or mask when near potential allergens.
Growing up on a farm and having multiple brothers and or sisters decreases the risk.
Immediate treatment with 100% oxygen, followed by recompression in a hyperbaric chamber, will in most cases result in no long-term effects. However, permanent long-term injury from DCS is possible. Three-month follow-ups on diving accidents reported to DAN in 1987 showed 14.3% of the 268 divers surveyed had ongoing symptoms of Type II DCS, and 7% from Type I DCS. Long-term follow-ups showed similar results, with 16% having permanent neurological sequelae.
A detailed history allows physicians to determine whether the presenting symptoms are due to an allergen or another source. Diagnostic tests such as conjunctival scrapings to look for eosinophils are helpful in determining the cause of the allergic response. Antihistamines, medication that stabilizes mast cells, and NSAIDs are safe and usually effective. Corticosteroids are reserved for more severe cases of ocular allergy disease, and their use should be monitored by an eye care physician due to possible side-effects. When an allergen is identified, the person should avoid the allergen as much as possible.