Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Azoospermia is usually detected in the course of an infertility investigation. It is established on the basis of two semen analysis evaluations done at separate occasions (when the seminal specimen after centrifugation shows no sperm under the microscope) and requires a further work-up.
The investigation includes a history, a physical examination including a thorough evaluation of the scrotum and testes, laboratory tests, and possibly imaging. History includes the general health, sexual health, past fertility, libido, and sexual activity. Past exposure to a number of agents needs to be queried including medical agents like hormone/steroid therapy, antibiotics, 5-ASA inhibitors (sulfasalazine), alpha-blockers, 5 alpha-reductase inhibitors, chemotherapeutic agents, pesticides, recreational drugs (marijuana, excessive alcohol), and heat exposure of the testes. A history of surgical procedures of the genital system needs to be elicited. The family history needs to be assessed to look for genetic abnormalities.
Congenital absence of the vas deferens may be detectable on physical examination and can be confirmed by a transrectal ultrasound (TRUS). If confirmed genetic testing for cystic fibrosis is in order. Transrectal ultrasound can also assess azoospermia caused by obstruction, or anomalies related to obstruction of the ejaculatory duct, such as abnormalities within the duct itself, a median cyst of the prostate (indicating a need for cyst aspiration), or an impairment of the seminal vesicles to become enlarged or emptied.
Retrograde ejaculation is diagnosed by examining a postejaculatory urine for presence of sperm after making it alkaline and centifuging it.
Low levels of LH and FSH with low or normal testosterone levels are indicative of pretesticular problems, while high levels of gonadotropins indicate testicular problems. However, often this distinction is not clear and the differentiation between obstructive versus non-obstructive azoospermia may require a testicular biopsy. On the other hand, "In azoospermic men with a normal ejaculate volume, FSH serum level greater than two times the upper limit of the normal range is reliably diagnostic of dysfunctional spermatogenesis and, when found, a diagnostic testicular biopsy is usually unnecessary, although no consensus exists in this matter." But also, extremely high levels of FSH (>45 ID/mL) have been correlated with successful microdissection testicular sperm extraction.
Serum inhibin-B weakly indicates presence of sperm cells in the testes, raising chances for successfully achieving pregnancy through testicular sperm extraction (TESE), although the association is not very substantial, having a sensitivity of 0.65 (95% confidence interval [CI]: 0.56–0.74) and a specificity of 0.83 (CI: 0.64–0.93) for prediction the presence of sperm in the testes in non-obstructive azoospermia.
Seminal plasma proteins TEX101 and ECM1 were recently proposed for the differential diagnosis of azoospermia forms and subtypes, and for prediction of TESE outcome. Mount Sinai Hospital, Canada started clinical trial to test this hypothesis in 2016.
It is recommended that men primary hypopituitarism may be linked to a genetic cause, a genetic evaluation is indicated in men with azoospermia due to primary hypopituitarism. Azoospermic men with testicular failure are advised to undergo karyotype and Y-micro-deletion testing.
Some strategies suggested or proposed for avoiding male infertility include the following:
- Avoiding smoking as it damages sperm DNA
- Avoiding heavy marijuana and alcohol use.
- Avoiding excessive heat to the testes.
- Maintaining optimal frequency of coital activity: sperm counts can be depressed by daily coital activity and sperm motility may be depressed by coital activity that takes place too infrequently (abstinence 10–14 days or more).
- Wearing a protective cup and jockstrap to protect the testicles, in any sport such as baseball, football, cricket, lacrosse, hockey, softball, paintball, rodeo, motorcross, wrestling, soccer, karate or other martial arts or any sport where a ball, foot, arm, knee or bat can come into contact with the groin.
- Diet: Healthy diets (i.e. the Mediterranean diet) rich in such nutrients as omega-3 fatty acids, some antioxidants and vitamins, and low in saturated fatty acids (SFAs) and trans-fatty acids (TFAs) are inversely associated with low semen quality parameters. In terms of food groups, fish, shellfish and seafood, poultry, cereals, vegetables and fruits, and low-fat dairy products have been positively related to sperm quality. However, diets rich in processed meat, soy foods, potatoes, full-fat dairy products, coffee, alcohol and sugar-sweetened beverages and sweets have been inversely associated with the quality of semen in some studies. The few studies relating male nutrient or food intake and fecundability also suggest that diets rich in red meat, processed meat, tea and caffeine are associated with a lower rate of fecundability. This association is only controversial in the case of alcohol. The potential biological mechanisms linking diet with sperm function and fertility are largely unknown and require further study.
Ultrasonography of the scrotum is useful when there is a suspicion of some particular diseases. It may detect signs of testicular dysgenesis, which is often related to an impaired spermatogenesis and to a higher risk of testicular cancer. Scrotum ultrasonography may also detect testicular lesions suggestive of malignancy. A decreased testicular vascularization is characteristic of testicular torsion, whereas hyperemia is often observed in epididymo-orchitis or in some malignant conditions such as lymphoma and leukemia. Doppler ultrasonography useful in assessing venous reflux in case of a varicocele, when palpation is unreliable or in detecting recurrence or persistence after surgery, although the impact of its detection and surgical correction on sperm parameters and overall fertility is debated.
Dilation of the head or tail of the epididymis is suggestive of obstruction or inflammation of the male reproductive tract. Such abnormalities are associated with abnormalities in sperm parameters, as are abnormalities in the texture of the epididymis. Scrotal and transrectal ultrasonography (TRUS) are useful in detecting uni- or bilateral congenital absence of the vas deferens (CBAVD), which may be associated with abnormalities or agenesis of the epididymis, seminal vesicles or kidneys, and indicate the need for testicular sperm extraction. TRUS plays a key role in assessing azoospermia caused by obstruction, and detecting distal CBAVD or anomalies related to obstruction of the ejaculatory duct, such as abnormalities within the duct itself, a median cyst of the prostate (indicating a need for cyst aspiration), or an impairment of the seminal vesicles to become enlarged or emptied.
Individuals with CAVD can reproduce with the assistance of modern technology with a combination of testicular sperm extraction and intracytoplasmic sperm injection (ICSI). However, as the risk of either cystic fibrosis or renal agenesis is likely to be higher in the children, genetic counseling is generally recommended.
A problem for people with penile agenesis is the absence of a urinary outlet. Before genital metamorphosis, the urethra runs down the anal wall, to be pulled away by the genital tubercle during male development. Without male development this does not occur. The urethra can be surgically redirected to the rim of the anus immediately after birth to enable urination and avoid consequent internal irritation from urea concentrate. In such cases, the perineum may be left devoid of any genitalia, male or female.
A working penis transplant on to an agenetic patient has never been successful. Only one major penis graft was successfully completed. This occurred in China and the patient shortly rejected it on psychological grounds. However a full female or agenetic to male transplant is not yet facilitated to fulfil full reproductive functions.
On March 18, 2013, it was announced that Andrew Wardle, a British man born without a penis, was going to receive a pioneering surgery to create a penis for him. The surgeons hope to "fold a large flap of skin from his arm — complete with its blood vessels and nerves — into a tube to graft onto his pubic area." If the surgery goes well, the odds of starting a family are very good.
The most common presentation of testicular cancer is a hard, painless lump which can be felt on one of the testis. It is either noticed by a clinician during a routine examination, or the patient themselves. Risk factors for TC include:
- Cryptorchidism
- Family history
- Previous testicular cancer
- Being white
The diagnosis is confirmed in different ways. An ultrasound scan can be used to diagnose to a 90-95% accuracy. Bloods can also be taken to look for elevated tumour markers which is also used to analyse the patient’s response to treatment. 80% of testicular cancer cases are from the 20-34 year old age range
Pre- and post-testicular azoospermia are frequently correctible, while testicular azoospermia is usually permanent. In the former the cause of the azoospermia needs to be considered and it opens up possibilities to manage this situation directly. Thus men with azoospermia due to hyperprolactinemia may resume sperm production after treatment of hyperprolactinemia or men whose sperm production is suppressed by exogenous androgens are expected to produce sperm after cessation of androgen intake. In situations where the testes are normal but unstimulated, gonadotropin therapy can be expected to induce sperm production.
A major advancement in recent years has been the introduction of IVF with ICSI which allows successful fertilization even with immature sperm or sperm obtained directly from testicular tissue. IVF-ICSI allows for pregnancy in couples where the man has irreversible testicular azoospermia as long as it is possible to recover sperm material from the testes. Thus men with non-mosaic Klinefelter's syndrome have fathered children using IVF-ICSI. Pregnancies have been achieved in situations where azoospermia was associated with cryptorchism and sperm where obtained by testicular sperm extraction (TESE).
In men with posttesticular azoospermia a number of approaches are available. For obstructive azoospermia IVF-ICSI or surgery can be used and individual factors need to be considered for the choice of treatment. Medication may be helpful for retrograde ejaculation.
Growth of the penis both before birth and during childhood and puberty is strongly influenced by testosterone and, to a lesser degree, the growth hormone. However, later endogenous hormones mainly have value in the treatment of micropenis caused by hormone deficiencies, such as hypopituitarism or hypogonadism.
Regardless of the cause of micropenis, if it is recognized in infancy, a brief course of testosterone is often prescribed (usually no more than 3 months). This usually induces a small amount of growth, confirming the likelihood of further growth at puberty, but rarely achieves normal size. No additional testosterone is given during childhood, to avoid unwanted virilization and bone maturation. (There is also some evidence that premature administration of testosterone can lead to reduced penis size in the adult.)
Testosterone treatment is resumed in adolescence only for boys with hypogonadism. Penile growth is completed at the end of puberty, similar to the completion of height growth, and provision of extra testosterone to post-pubertal adults produces little or no further growth.
It is a rare condition, with only approximately 60 cases reported as of 1989, and 75 cases as of 2005. However, due to the stigma of intersex conditions and the issues of keeping accurate statistics and records among doctors, it is likely there are more cases than reported.
A number of treatments have become available to create a functioning vagina, yet in the absence of a uterus currently no surgery is available to make pregnancy possible. Standard approaches use vaginal dilators and/or surgery to develop a functioning vagina to allow for penetrative sexual intercourse. A number of surgical approaches have been used. In the McIndoe procedure, a skin graft is applied to form an artificial vagina. After the surgery, dilators are still necessary to prevent vaginal stenosis. The Vecchietti procedure has been shown to result in a vagina that is comparable to a normal vagina in patients. In the Vecchietti procedure, a small plastic “olive” is threaded against the vaginal area, and the threads are drawn through the vaginal skin, up through the abdomen and through the navel using laparoscopic surgery. There the threads are attached to a traction device. The operation takes about 45 minutes. The traction device is then tightened daily so the olive is pulled inwards and stretches the vagina by approximately 1 cm per day, creating a vagina approximately 7 cm deep in 7 days, although it can be more than this. Another approach is the use of an autotransplant of a resected sigmoid colon using laparoscopic surgery; results are reported to be very good with the transplant becoming a functional vagina.
Uterine transplantation has been performed in a number of people with MRKH, but the surgery is still in the experimental stage. Since ovaries are present, people with this condition can have genetic children through IVF with embryo transfer to a gestational carrier. Some also choose to adopt. In October 2014 it was reported that a month earlier a 36-year-old Swedish woman became the first person with a transplanted uterus to give birth to a healthy baby. She was born without a uterus, but had functioning ovaries. She and the father went through IVF to produce 11 embryos, which were then frozen. Doctors at the University of Gothenburg then performed the uterus transplant, the donor being a 61-year-old family friend. One of the frozen embryos was implanted a year after the transplant, and the baby boy was born prematurely at 31 weeks after the mother developed pre-eclampsia.
Promising research include the use of laboratory-grown structures, which are less subject to the complications of non-vaginal tissue, and may be grown using the person's own cells as a culture source. The recent development of engineered vaginas using the patient's own cells has resulted in fully functioning vaginas capable of menstruation and orgasm in a number of patients showing promise of fully correcting this condition in some of the sufferers.
Patients with Leydig cell hypoplasia may be treated with hormone replacement therapy (i.e., with androgens), which will result in normal sexual development and the resolution of most symptoms. In the case of 46,XY (genetically "male") individuals who are phenotypically female and/or identify as the female gender, estrogens should be given instead. Surgical correction of the genitals in 46,XY males may be required, and, if necessary, an orchidopexy (relocation of the undescended testes to the scrotum) may be performed as well.
Since the Sertoli cells are not affected by Leydig cell hypoplasia, anti-Müllerian hormone is secreted normally and so there are no Müllerian structures. Wolffian structures, such as the prostate, vasa deferentia, and epidydimides are present. In type I, abdominal testes are revealed on ultrasound; in type II testes may be descended or undescended.
People with Leydig cell hypoplasia type I display no response to the hCG stimulation test; there is no increase in serum levels of testosterone and dihydrotestosterone. Leydig cell hypoplasia type II can display either a pronounced rise of testosterone levels or no rise.
In any case, the diagnosis is confirmed on biopsy of the testes, revealing either absent or hypoplastic Leydig cells. The inside of the testis will be grayish and mucous, displaying arrested spermatogenesis and the presence of Sertoli cells. The diagnosis can also be confirmed by looking for mutations in the gene for the LH receptor.
A diagnosis of Leydig cell hypoplasia is usually made in the neonatal period, following the discovery of ambiguous genitalia, or at puberty, when secondary sex characteristics fail to develop. Puberty is the most common time for Leydig cell hypoplasia to be diagnosed.
Congenital anomalies like cryptorchidism, renal agenesis/dysplasia, musculoskeletal and cardiopulmonary anomalies are also common (>50% cases), hence evaluation of the patient for internal anomalies is mandatory.
Although aphallia can occur in any body type, it is considered a substantially more troublesome problem with those who have testes present, and has in the past sometimes been considered justification for assigning and rearing a genetically male infant as a girl. After the theory in the 1950s that gender as a social construct was purely nurture and so an individual child could be raised early on and into one gender or the other regardless of their genetics or brain chemistry. Intersex people generally advocate harshly against coercive genital reassignment however, and encourage infants to be raised choosing their own gender identity. The nurture theory has been largely abandoned and cases of trying to rear children this way have not proven to be successful transitions.
In newborn period or infancy, feminizing operations are recommended for treatment of penile agenesis, but after 2 years, as sexual identification of the patients has appeared, it is advised to perform masculinizing operations in order not to disturb the child psychologically.
Recent advances in surgical phalloplasty techniques have provided additional options for those still interested in pursuing surgery.
Scrotal ultrasonography and transrectal ultrasonography (TRUS) are useful in detecting uni- or bilateral CBAVD, which may be associated with visible abnormalities or agenesis of the epididymis, seminal vesicles or kidneys.
Because hormone treatment rarely achieves average size, several surgical techniques similar to phalloplasty for penis enlargement have been devised and performed; but they are not generally considered successful enough to be widely adopted and are rarely performed in childhood.
In extreme cases of micropenis, there is barely any shaft, and the glans appears to sit almost on the pubic skin. From the 1960s until the late 1970s, it was common for sex reassignment and surgery to be recommended. This was especially likely if evidence suggested that response to additional testosterone and pubertal testosterone would be poor. With parental acceptance, the boy would be reassigned and renamed as a girl, and surgery performed to remove the testes and construct an artificial vagina. This was based on the now-questioned idea that gender identity was shaped entirely from socialization, and that a man with a small penis can find no acceptable place in society.
Johns Hopkins Hospital, the center most known for this approach, performed twelve such reassignments from 1960 to 1980, most notably that of David Reimer (whose penis was destroyed by a circumcision accident), overseen by John Money. By the mid-1990s, reassignment was less often offered, and all three premises had been challenged. Former subjects of such surgery, vocal about their dissatisfaction with the adult outcome, played a large part in discouraging this practice. Sexual reassignment is rarely performed today for severe micropenis (although the question of raising the boy as a girl is sometimes still discussed.) (See "History of intersex surgery" for a fuller discussion.)
A treatment option for micropenis is the insertion of a subcutaneous soft silicone implant under the penile skin. The procedure was developed by urologist James J. Elist.
Central to the cause of irreversible TDS are disruptions to early fetal testes development. This has both genetic, environmental, and lifestyle components, however the rapid increase in the incidence of the disorders associated with TDS in the last decades indicates that it is under a powerful environmental influence. The fetal origins of TDS are reinforced by the high incidence of TDS disorders found occurring together in one individual.
The prevalence remains sparsely investigated. To date, two population-based nationwide studies have been conducted both estimating a prevalence about 1 in 5000 live female births. According to some reports, Queen Amalia of Greece may have had the syndrome, but a 2011 review of the historical evidence concludes that it is not possible to determine the inability of her and her husband to have a child. Her inability to provide an heir contributed to the overthrow of her husband, King Otto.
People with either penile agenesis or testicular agenesis, but not both, usually continue as males throughout their lives. Historically, people with both penile and testicular agenesis were raised as females and eventually underwent sex reassignment surgery, despite having a normal 46,XY male karyotype and no female sexual characteristics. This practice was controversial, and many individuals decided to live as males again when they reached puberty or their early twenties. The New Zealand sexologist John Money was the principle theorist who argued that boys born without an "adequate" penis, or who lost their penis in an accident, should be raised as sex reassigned girls. The book "As Nature Made Him" chronicles the disastrous results of the application of Money's theories in the Bruce/Brenda case. The anatomy underlying the failure of these cases is not well understood. In most males, the development of the embryo into a female is prevented by Anti-Müllerian hormones. These hormones are commonly believed to be created in the testes, but they nevertheless still appear to be produced in male embryos lacking testes.
The diagnosis of cervical agenesis can be made by magnetic resonance imaging, which is used to determine the presence or absence of a cervix. Although MRI can detect the absence of a cervix (agenesis), it is unable to show cervical dysgenesis (where the cervix is present, but malformed). Ultrasound is a less reliable imaging study, but it is often the first choice by gynecologists to establish a diagnosis and can identify a hematometra secondary to cervical agenesis.
Besides a physical examination, the physician will need imaging techniques to determine the character of the malformation: gynecologic ultrasonography, pelvic MRI, or hysterosalpingography. A hysterosalpingogram is not considered as useful due to the inability of the technique to evaluate the exterior contour of the uterus and distinguish between a bicornuate and septate uterus.
In addition, laparoscopy and/or hysteroscopy may be indicated.
In some patients the vaginal development may be affected.
The main causes are Müllerian agenesis and complete androgen insensitivity syndrome.
Vaginal hypoplasia is estimated to occur in 1 in 4,000–5,000 live female births. It is often unnoticed until adolescence when pain and a lack of menstrual flow indicates the condition.
The first line of therapy after diagnosis typically involves the administration of the combined oral contraceptive pill, medroxyprogesterone acetate or a gonadotropin-releasing hormone agonist to suppress menstruation and thereby relieve pain. Surgically, cervical agenesis has historically been treated through hysterectomy (removal of the uterus) to relieve symptoms caused by hematocolpos (the accumulation of menstrual fluid in the vagina). Other surgical methods of management involve the creation of an anastomotic connection between the uterus and vagina by neovaginoplasty or recanalization of the cervix. Outcomes in these cases are generally poor, since the natural functions of the cervix—such as mucus production and providing a barrier against ascending infection—cannot be replicated. Furthermore, the success rate of uterovaginal anastomosis is less than 50% and most patients require multiple surgeries while many develop cervical stenotis. Despite this, several pregnancies have been reported in women with cervical agenesis who underwent surgical treatment.
Nuclear receptor subfamily 5 group A member 1 (NR5A1), also known as SF1 or Ad4BP (MIM 184757), is located on the long arm of chromosome 9 (9q33.3). The NR5A1 is an orphan nuclear receptor that was first identified following the search for a common regulator of the cytochrome P450 steroid hydroxylase enzyme family. This receptor is a pivotal transcriptional regulator of an array of genes involved in reproduction, steroidogenesis and male sexual differentiation and also plays a crucial role in adrenal gland formation in both sexes. NR5A1 regulates the mullerian inhibitory substance by binding to a conserved upstream regulatory element and directly participates in the process of mammalian sex determination through mullerian duct regression. Targeted disruption of NR5A1 (Ftzf1) in mice results in gonadal and adrenal agenesis, persistence of Mullerian structures and abnormalities of the hypothalamus and pituitary gonadotropes. Heterozygous animals demonstrate a milder phenotype including an impaired adrenal stress response and reduced testicular size. In humans, NR5A1 mutations were first described in patients with 46, XY karyotype and disorders of sex development (DSD), Mullerian structures and primary adrenal failure (MIM 612965). After that, heterozygous NR5A1 mutations were described in seven patients showing 46, XY karyotype and ambiguous genitalia, gonadal dysgenesis, but no adrenal insufficiency. Since then, studies have confirmed that mutations in NR5A1 in patients with 46, XY karyotype cause severe underandrogenisation, but no adrenal insufficiency, establishing dynamic and dosage-dependent actions for NR5A1. Subsequent studies revealed that NR5A1 heterozygous mutations cause primary ovarian insufficiency (MIM 612964).
The prevalence of uterine malformation is estimated to be 6.7% in the general population, slightly higher (7.3%) in the infertility population, and significantly higher in a population of women with a history of recurrent miscarriages (16%).