Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There are little data on prognosis. Rarely, some patients have died in infancy from respiratory failure; otherwise, life expectancy is considered to be normal.
One research priority is to determine the role and nature of malignant hyperthermia in FSS. Such knowledge would benefit possible surgical candidates and the anaesthesiology and surgical teams who would care for them. MH may also be triggered by stress in patients with muscular dystrophies. Much more research is warranted to evaluate this apparent relationship of idiopathic hyperpyrexia, MH, and stress. Further research is wanted to determine epidemiology of psychopathology in FSS and refine therapy protocols.
Diagnosis depends on the clinical scenario. However, karyotyping is an essential test for diagnosis.
The only treatment for MWS is only symptomatic, with multidisciplinary management
There have been 30 cases of Marden-Walker Syndrome reported since 1966. The first case of this was in 1966 a female infant was diagnosed with blepharophimosis, joint contractures, arachnodactyly and growth development delay. She ended up passing at 3 months due to pneumonia.
Genetic screening is also typically done postnatally, including PCR typing of microsatellite DNA and STS markers as well as comparative genomic hybridization (CGH) studies using DNA microarrays.
In some cases PCR and sequencing of the entire "SOX9" gene is used to diagnose CMD.
Many different translocation breakpoints and related chromosomal aberrations in patients with CMD have been identified.
"In utero" sonographic diagnosis is possible when characteristic features such as bilateral bowed femurs and tibia, clubbed feet, prominent curvature of the neck, a bell-shaped chest, pelvic dilation, and/or an undersized jaw are apparent
Radiographic techniques are generally used only postnatally and also rely on prototypical physical characteristics.
Craniometaphyseal dysplasia is diagnosed based on clinical and radiographic findings that include hyperostosis. Some things such as cranial base sclerosis and nasal sinuses obstruction can be seen during the beginning of the child's life. In radiographic findings the most common thing that will be found is the narrowing of foramen magnum and the widening of long bones. Once spotted treatment is soon suggested to prevent further compression of the foramen magnum and disabling conditions.
Mäkelä-Bengs et al. (1997,1998) performed a genome-wide screening and linkage analysis and assigned the LCCS locus to a defined region of 9q34.
Many people with MDP syndrome are high achievers intellectually following careers in law, medicine and computing. A crucial point is that they do not have progeria and there is no evidence of accelerated intellectual decline with age in these patients. Equally life expectancy has not been shown to be reduced. Patients of 65 have been described in the literature and none of the patients are known to have malignancy. Therefore, there are many crucial differences with progeria and the name of progeroid in the title is confusing as this really refers to the lack of fat in the face and taut skin and not any intellectual or other age associated features.
Surgery is an option to correct some of the morphological changes made by Liebenberg Syndrome. Cases exist where surgery is performed to correct radial deviations and flexion deformities in the wrist. A surgery called a carpectomy has been performed on a patient whereby a surgeon removes the proximal row of the carpal bones. This procedure removes some of the carpal bones to create a more regular wrist function than is observed in people with this condition.
The diagnosis of PPS has been made in several ethnic groups, including Caucasian, Japanese, and sub-Saharan African. Males and females are equally likely to suffer from the syndrome. Since the disorder is very rare, its incidence rate is difficult to estimate, but is less than 1 in 10,000.
The only treatment for this disorder is surgery to reduce the compression of cranial nerves and spinal cord. However, bone regrowth is common since the surgical procedure can be technically difficult. Genetic counseling is offered to the families of the people with this disorder.
Deafness is a feature of MDP syndrome as a result of the nerves not working well and people often have difficulty getting hearing aids because of the small size of their ears. Digital hearing aids can be helpful and audiometry follow up will be needed.
Ischiopatellar dysplasia is usually identified through radiographic evidence since its characteristic changes are most notable in radiographic tests that indicate delayed boneage or absent ossification. A full skeletal survey should be performed on any patient that has an absent or hypoplastic patellae since they could potentially have ischiopatellar dysplasia. Magnetic resonance imaging (MRI) is especially helpful in the diagnosis of ischiopatellar syndrome and is recommended when an individual affected by ischiopatellar dysplasia has a traumatic injury to the knee.
A combination of medical tests are used to diagnosis kniest dysplasia. These tests can include:
- Computer Tomography Scan(CT scan) - This test uses multiple images taken at different angles to produce a cross-sectional image of the body.
- Magnetic Resonance Imaging (MRI) - This technique proves detailed images of the body by using magnetic fields and radio waves.
- EOS Imaging - EOS imaging provides information on how musculoskeletal system interacts with the joints. The 3D image is scanned while the patient is standing and allows the physician to view the natural, weight-bearing posture.
- X-rays - X-ray images will allow the physician to have a closer look on whether or not the bones are growing abnormally.
The images taken will help to identify any bone anomalies. Two key features to look for in a patient with kniest dysplasia is the presence of dumb-bell shaped femur bones and coronal clefts in the vertebrae. Other features to look for include:
- Platyspondyly (flat vertebral bodies)
- Kyphoscoliosis (abnormal rounding of the back and lateral curvature of the spine)
- Abnormal growth of epiphyses, metaphyses, and diaphysis
- Short tubular bones
- Narrowed joint spaces
Genetic Testing - A genetic sample may be taken in order to closely look at the patient's DNA. Finding an error in the COL2A1 gene will help identify the condition as a type II chondroldysplasia.
There are several ways to determine if a child has chondrodystrophy, including parent testing and x-rays. If the fetus is suspected of having chondrodystrophy, the parents can be tested to find out if the fetus in fact does have the disease. It is not until the baby is born that a diagnosis can be declared. The diagnosis is declared with the help of several x-rays and charted bone growth patterns. Once the child is diagnosed the parents have to monitor the children because of several different factors. As the child gets older, hearing, eyesight and motor skills may be defective. Also, breathing (apnea) and weight problems (obesity) may occur. Structurally, scoliosis, bowed legs (genu varum), and arthritis may result.
Diagnosis of Bruck syndrome must distinguish the association of contractures and skeletal fragility. Ultrasound is used for prenatal diagnosis. The diagnosis of a neonate bears resemblance to arthrogryposis multiplex congenital, and later in childhood to osteogenesis imperfecta.
Van der Woude syndrome (VDWS) and popliteal pterygium syndrome (PPS) are allelic variants of the same condition; that is, they are caused by different mutations of the same gene. PPS includes all the features of VDWS, plus popliteal pterygium, syngnathia, distinct toe/nail abnormality, syndactyly, and genito-urinary malformations.
Modeling EEC syndrome in vitro has been achieved by reprogramming EEC fibroblasts carrying mutations R304W and R204W into induced pluripotent stem cell (iPSC) lines. EEC-iPSC recapitulated defective epidermal and corneal fates. This model further identified PRIMA-1MET, a small compound that was identified as a compound targeting and reactivating p53 mutants based on a cell-based screening for rescuing the apoptotic activity of p53, as efficient to rescue R304W mutation defect. Of interest, similar effect had been observed on keratinocytes derived from the same patients. PRIMA-1MET could become an effective therapeutic tool for EEC patients.
Further genetic research is necessary to identify and rule out other possible loci contributing to EEC syndrome, though it seems certain that disruption of the p63 gene is involved to some extent. In addition, genetic research with an emphasis on genetic syndrome differentiation should prove to be very useful in distinguishing between syndromes that present with very similar clinical findings. There is much debate in current literature regarding clinical markers for syndromic diagnoses. Genetic findings could have great implications in clinical diagnosis and treatment of not only EEC, but also many other related syndromes.
Dysplastic kidneys are prevalent in over 95% of all identified cases. When this occurs, microscopic cysts develop within the kidney and slowly destroy it, causing it to enlarge to 10 to 20 times its original size. The level of amniotic fluid within the womb may be significantly altered or remain normal, and a normal level of fluid should not be criteria for exclusion of diagnosis.
Occipital encephalocele is present in 60% to 80% of all cases, and post-axial polydactyly is present in 55% to 75% of the total number of identified cases. Bowing or shortening of the limbs are also common.
Finding at least two of the three phenotypic features of the classical triad, in the presence of normal karyotype, makes the diagnosis solid. Regular ultrasounds and pro-active prenatal care can usually detect symptoms early on in a pregnancy.
The main diagnostic tools for evaluating FND are X-rays and CT-scans of the skull. These tools could display any possible intracranial pathology in FND. For example, CT can be used to reveal widening of nasal bones. Diagnostics are mainly used before reconstructive surgery, for proper planning and preparation.
Prenatally, various features of FND (such as hypertelorism) can be recognized using ultrasound techniques. However, only three cases of FND have been diagnosed based on a prenatal ultrasound.
Other conditions may also show symptoms of FND. For example, there are other syndromes that also represent with hypertelorism. Furthermore, disorders like an intracranial cyst can affect the frontonasal region, which can lead to symptoms similar to FND. Therefore, other options should always be considered in the differential diagnosis.
This not known with certainty but is estimated to be about one per million. It appears to be more common in females than males.
Arthrogryposis–renal dysfunction–cholestasis syndrome (also known as "ARC syndrome") is a cutaneous condition caused by a mutation in the VPS33B gene. Most of the cases have been survived for infancy. Recently, College of Medical Sciences in Nepal reports a case of ARC syndrome in a girl at the age of more than 18 years.
While some reports suggest Gordon syndrome may be inherited in an X-linked dominant manner, most agree that it is inherited in an autosomal dominant manner with reduced expressivity and incomplete penetrance in females.
In autosomal dominant inheritance, having only one mutated copy of the disease-causing gene in each cell is sufficient to cause signs and symptoms of the condition. When an individual with an autosomal dominant condition has children, each child has a 50% (1 in 2) risk to inherit the mutated copy of the gene.
If a condition shows variable or reduced expressivity, it means that there can be a range in the nature and severity of signs and symptoms among affected individuals. Incomplete penetrance means that a portion of the individuals who carry the mutated copy of the disease-causing gene will not have any features of the condition.