Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The degeneration of white matter, which shows the degeneration of myelin, can be seen in a basic MRI and used to diagnose leukodystrophies of all types. T-1 and T-2 weighted FLAIR images are the most useful. FLAIR stands for fluid-attenuated inversion recovery. Electrophysiological and other kinds of laboratory testing can also be done. In particular, nerve conduction velocity is looked at to distinguish between leukodystrophy and other demyelinating diseases, as well as to distinguish between individual leukodystrophies. For example, individuals with X-ALD have normal conduction velocities, while those with Krabbe disease or metachromatic leukodystrophy have abnormalities in their conduction velocities. Next generation multigene sequencing panels for undifferentiated leukodystrophy can now be offered for rapid molecular diagnosis after appropriate genetic counselling.
Currently, no research has shown a higher prevalence of most leukodsytrophy types in any one place around the world. There is, however, a higher prevalence of the Canavan disease in the Jewish population for unknown reasons. 1 in 40 individuals of Ashkenazi Jewish descent are carriers of Canavan disease. This estimates to roughly 2.5%. Additionally, due to an autosomal recessive inheritance patterns, there is no significant difference found between affected males and affected females for most types of leukodystrophy including, but not limited to, metachromatic leukodystrophy, Krabbe disease, Canavan disease, and Alexander disease. The one exception to this is any type of leukodystrophy carried on a sex chromosome, such as X-linked adrenoleukodystrophy, which is carried on the X-chromosome. Because of the inheritance pattern of X-linked diseases, males are more often affected by this type of leukodystrophy, although female carriers are often symptomatic, though not as severely so as males. To date, there have been no found cases of a leukodystrophy carried on the Y chromosome.
HDL1 is an unusual, autosomal dominant familial prion disease. Only described in one family, it is caused by an eight-octapeptide repeat insertion in the "PRNP" gene. More broadly, inherited prion diseases in general can mimic HD.
The Huntington's disease-like syndromes (often abbreviated as HD-like or "HDL" syndromes) are a family of inherited neurodegenerative diseases that closely resemble Huntington's disease (HD) in that they typically produce a combination of chorea, cognitive decline or dementia and behavioural or psychiatric problems.
There is no cure for PMD, nor is there a standard course of treatment. Treatment, which is symptomatic and supportive, may include medication for seizures and spasticity. Regular evaluations by physical medicine and rehabilitation, orthopedic, developmental and neurologic specialists should be made to ensure optimal therapy and educational resources. The prognosis for those with Pelizaeus–Merzbacher disease is highly variable, with children with the most severe form (so-called connatal) usually not surviving to adolescence, but survival into the sixth or even seventh decades is possible, especially with attentive care. Genetic counseling should be provided to the family of a child with PMD.
In December 2008, StemCells Inc., a biotech company in Palo Alto, received clearance from the U.S. Food and Drug Administration (FDA) to conduct Phase I clinical trials in PMD to assess the safety of transplanting human neural stem cells as a potential treatment for PMD. The trial was initiated in November 2009 at the University of California, San Francisco (UCSF) Children's Hospital.
This is a terminal condition and there is currently no specific treatment for the disease.
The disease is one in a group of genetic disorders collectively known as leukodystrophies that affect growth of the myelin sheath, the fatty covering—which acts as an insulator—on nerve fibers in the CNS. PMD is generally caused by a recessive mutation of the gene on the long arm of the X-chromosome (Xq21-22) that codes for a myelin protein called proteolipid protein 1 or PLP1.
The onset of Pelizaeus–Merzbacher disease is usually in early infancy. The most characteristic early signs are nystagmus (rapid, involuntary, rhythmic motion of the eyes) and hypotonia (low muscle tone). Motor abilities are delayed or never acquired, mostly depending upon the severity of the mutation. Most children with PMD learn to understand language, and usually have some speech. Other signs may include tremor, lack of coordination, involuntary movements, weakness, unsteady gait, and over time, spasticity in legs and arms. Muscle contractures (shrinkage or shortening of a muscle) often occur over time. Mental functions may deteriorate. Some patients may have convulsions and skeletal deformation, such as scoliosis, resulting from abnormal muscular stress on bones.
There are several forms of Pelizaeus–Merzbacher disease including classic, connatal, transitional, and adult variants. The majority of disease-causing mutations result in duplications of the entire PLP1 gene. Interestingly, deletions at the PLP1 locus (which are rarer) cause a milder form of PMD than is observed with the typical duplication mutations, which demonstrates the critical importance of gene dosage at this locus for normal CNS function. Some of the remaining cases of PMD are accounted for by mutations in the gap junction A12 ("GJA12") gene, and are now called Pelizaeus-Merzbacher-like disease (PMLD). Other cases of apparent PMD do not have mutations in either the "PLP1" or "GJA12" genes, and are presumed to be caused either by mutations in other genes, or by mutations not detected by sequencing the "PLP1" gene exons and neighboring intronic regions of the gene. Among these is a new genetic disorder (discovered in 2003, 2004) which is caused by mutation in the transporter of thyroid hormone, MCT8, also known as SLC16A2, is believed to be account for a significant fraction of the undiagnosed neurological disorders (usually resulting in hypotonic/floppy infants with delayed milestones). This genetic defect was known as Allan–Herndon–Dudley syndrome (since 1944) without knowing its actual cause. Some of the signs for this disorder are as follows: normal to slightly elevated TSH, elevated T and reduced T (ratio of T/T is about double its normal value). Normal looking at birth and for the first few years, hypotonic (floppy), in particular difficulty to hold the head, possibly difficulty to thrive, possibly with delayed myelination (if so, some cases are reported with an MRI pattern similar to Pelizaeus–Merzbacher disease, known as PMD,) possibly with decreased mitochondrial enzyme activities, possibly with fluctuating lactate level. Patients have an alert face, a limited IQ, patients may never talk/walk, 50% need feeding tube, patients have a normal life span. MCT8 can be ruled out with a simple TSH/T/T thyroid test.
Milder mutations of the "PLP1" gene that mainly cause leg weakness and spasticity, with little or no cerebral involvement, are classified as spastic paraplegia 2 (SPG2).
By age 3 about 30% of rats have had cancer, whereas by age 85 about 30% of humans have had cancer. Humans, dogs and rabbits get Alzheimer's disease, but rodents do not. Elderly rodents typically die of cancer or kidney disease, but not of cardiovascular disease. In humans, the relative incidence of cancer increases exponentially with age for most cancers, but levels off or may even decline by age 60–75 (although colon/rectal cancer continues to increase).
People with the so-called segmental progerias are vulnerable to different sets of diseases. Those with Werner's syndrome suffer from osteoporosis, cataracts and cardiovascular disease, but not neurodegeneration or Alzheimer's disease; those with Down syndrome suffer type 2 diabetes and Alzheimer's disease, but not high blood pressure, osteoporosis or cataracts. In Bloom syndrome, those afflicted most often die of cancer.
Upington disease, also called Perthes-like hip disease, enchondromata, ecchondromata, and familial dyschondroplasia, is an extremely rare autosomal dominant malformation disorder. It has only one published source claiming its existence in three generations of one family from South Africa.
Currently, no treatment slows the neurodegeneration in any of the neuroacanthocytosis disorders. Medication may be administered to decrease the involuntary movements produced by these syndromes. Antipsychotics are used to block dopamine, anticonvulsants treat seizures and botulinum toxin injections may control dystonia. Patients usually receive speech, occupational and physical therapies to help with the complications associated with movement. Sometimes, physicians will prescribe antidepressants for the psychological problems that accompany neuroacanthocytosis. Some success has been reported with Deep brain stimulation.
Mouthguards and other physical protective devices may be useful in preventing damage to the lips and tongue due to the orofacial chorea and dystonia typical of chorea acanthocytosis.
This disease can only be confirmed at the post-mortem, which includes identification of bilaterally symmetrical vacuolation of the neuropil and vacuolation in neurones. Lesions are likely to be found in basal ganglia, cerebral cortex and thalamus of the brain.
An aging-associated disease is a disease that is most often seen with increasing frequency with increasing senescence. Essentially, aging-associated diseases are complications arising from senescence. Age-associated diseases are to be distinguished from the aging process itself because all adult animals age, save for a few rare exceptions, but not all adult animals experience all age-associated diseases. Aging-associated diseases do not refer to age-specific diseases, such as the childhood diseases chicken pox and measles. "Aging-associated disease" is used here to mean "diseases of the elderly". Nor should aging-associated diseases be confused with accelerated aging diseases, all of which are genetic disorders.
Examples of aging-associated diseases are atherosclerosis and cardiovascular disease, cancer, arthritis, cataracts, osteoporosis, type 2 diabetes, hypertension and Alzheimer's disease. The incidence of all of these diseases increases rapidly with aging (increases exponentially with age, in the case of cancer).
Of the roughly 150,000 people who die each day across the globe, about two thirds—100,000 per day—die of age-related causes. In industrialized nations, the proportion is higher, reaching 90%.
Currently there is no single diagnosis test for MS that is 100% sensitive and specific. To have such a thing would require a standardised definition of the disease, which currently does not exist. The most commonly used definition, based in the McDonald criteria, focuses in the presence and distribution of the lesions, not in the underlying condition that produces them. Therefore, even twins with the same underlying condition can be classified different
The disease is characterized by Perthes-like pelvic anomalies (premature closure of the capital femoral epiphyses and widened femoral necks with flattened femoral heads), enchondromata and ecchondromata.
Also inside standard MS different clinical courses can be separated.
The hallmark of the neuroacanthocytosis syndromes is the presence of acanthocytes in peripheral blood. "Acanthocytosis" originated from the Greek word "acantha", meaning thorn. Acanthocytes are spiculated red blood cells and can be caused by altered distribution of membrane lipids or membrane protein/skeleton abnormalities. In neuroacanthocytosis, acanthocytes are caused by protein but not lipid membrane abnormalities
Hypoparathyroidism can be diagnosed using blood tests, the Chvostek sign, and the Trousseau sign. If comorbid conditions like congenital malformations, impaired growth, and intellectual disability are present, it may be a genetic form of hypoparathyroidism; the affected gene can be determined using a DNA test.
The constellation of anomalies seen with Nasodigitoacoustic syndrome result in a distinct diagnosis. The diagnostic criteria for the disorder are broad distal phalanges of the thumbs and big toes, accompanied by a broad and shortened nose, sensorineural hearing loss and developmental delay, with predominant occurrence in males.
Nasodigitoacoustic syndrome is similar to several syndromes that share its features. Brachydactyly of the distal phalanges, sensorineural deafness and pulmonary stenosis are common with Keutel syndrome. In Muenke syndrome, developmental delay, distal brachydactyly and sensorineural hearing loss are reported; features of Teunissen-Cremers syndrome include nasal aberrations and broadness of the thumbs and big toes, also with brachydactyly. Broad thumbs and big toes are primary characteristics of Rubinstein syndrome.
MRI is the most sensitive imaging technique that can be used for diagnosing NBD. As for the parenchymal NBD, medical doctors mainly monitor the upper brainstem lesion. In fact, it is possible that lesions extends to thalamus and basal ganglia. Another advantage of using MRI is the ability to perform Diffusion-weighted imaging, or diffusion MRI. This technique is the most sensitive tool to image an acute infarct. In the case of NBD, Diffusion MRI can determine whether the lesion were due to cerebral infarction. In other words, it can distinguish NBD from non-NBD neural disease. When only spinal cord is affected by NBD, brain looks perfectly normal when scanned by MRI. Therefore, it is necessary to scan the spinal cord as well when diagnosing possible NBD involvement. As for the non-parenchymal NBD, venous sinus thrombosis can be detected.
In the US, neuroborreliosis is typically treated with intravenous antibiotics which cross the blood–brain barrier, such as penicillins, ceftriaxone, or cefotaxime. One relatively small randomized controlled trial suggested ceftriaxone was more effective than penicillin in the treatment of neuroborreliosis. Small observational studies suggest ceftriaxone is also effective in children. The recommended duration of treatment is 14 to 28 days.
Several studies from Europe have suggested oral doxycycline is equally as effective as intravenous ceftriaxone in treating neuroborreliosis. Doxycycline has not been widely studied as a treatment in the US, but antibiotic sensitivities of prevailing European and US isolates of "Borrelia burgdorferi" tend to be identical. However, doxycycline is generally not prescribed to children due to the risk of bone and tooth damage.
Discreditied or doubtful treatments for neuroborreliosis include:
- Malariotherapy
- Hyperbaric oxygen therapy
- Colloidal silver
- Injections of hydrogen peroxide and bismacine
Heterogeneous medical condition in medicine are those medical conditions which have several etiologies, like hepatitis or diabetes. Medical conditions are normally defined pathologically (liver inflammation) or clinically (excessive urination) and not etiologically, and therefore it is normal to have more than one cause for them. The word is used as an opposition to homogeneous, meaning that given a group of patients, the disease is the same for all of them.
When a condition is heterogeneous, it is normally divided in endotypes.
Although there is a diagnostic criterion for Behçet's disease, one for neuro-Behçet's disease does not exist. Three diagnostic tools are mainly used.
An endotype is a subtype of a condition, which is defined by a distinct functional or pathobiological mechanism. This is distinct from a phenotype, which is any observable characteristic or trait of a disease, such as morphology, development, biochemical or physiological properties, or behavior, without any implication of a mechanism. It is envisaged that patients with a specific endotype present themselves within phenotypic clusters of diseases.
One example is asthma, which is considered to be a syndrome, consisting of a series of endotypes. This is related to the concept of disease entity
The prognosis for gliomatosis cerebri is generally poor. Surgery is not practical considering the extent of the disease, standard chemotherapy (nitrosourea) has been unsuccessful, and while brain irradiation can stabilize or improve neurologic function in some patients, its impact on survival has yet to be proven.
In 2014, Weill Cornell Brain and Spine Center launched an international registry for Gliomatosis Cerebri, where tissue samples can be stored for genomic study.