Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A number of labs may be helpful in determining the cause of shortness of breath. D-dimer while useful to rule out a pulmonary embolism in those who are at low risk is not of much value if it is positive as it may be positive in a number of conditions that lead to shortness of breath. A low level of brain natriuretic peptide is useful in ruling out congestive heart failure; however, a high level while supportive of the diagnosis could also be due to advanced age, renal failure, acute coronary syndrome, or a large pulmonary embolism.
A chest x-ray is useful to confirm or rule out a pneumothorax, pulmonary edema, or pneumonia. Spiral computed tomography with intravenous radiocontrast is the imaging study of choice to evaluate for pulmonary embolism.
Treatment for paroxysmal nocturnal dyspnea depends on the underlying cause. Options often include oxygen, diuretics, heart medications, antihypertensives, and bronchodilators to reverse wheezing.
Paroxysmal nocturnal dyspnea or paroxysmal nocturnal dyspnoea (PND) refers to attacks of severe shortness of breath and coughing that generally occur at night. It usually awakens the person from sleep, and may be quite frightening. Though simple orthopnea may be relieved by sitting upright at the side of the bed with legs dangling, in those with PND, coughing and wheezing often persist in this position.
There is no one single test for confirming that breathlessness is caused by pulmonary edema; indeed, in many cases, the cause of shortness of breath is probably multifactorial.
Low oxygen saturation and disturbed arterial blood gas readings support the proposed diagnosis by suggesting a pulmonary shunt. Chest X-ray will show fluid in the alveolar walls, Kerley B lines, increased vascular shadowing in a classical batwing peri-hilum pattern, upper lobe diversion (increased blood flow to the superior parts of the lung), and possibly pleural effusions. In contrast, patchy alveolar infiltrates are more typically associated with noncardiogenic edema
Lung ultrasound, employed by a healthcare provider at the point of care, is also a useful tool to diagnose pulmonary edema; not only is it accurate, but it may quantify the degree of lung water, track changes over time, and differentiate between cardiogenic and non-cardiogenic edema.
Especially in the case of cardiogenic pulmonary edema, urgent echocardiography may strengthen the diagnosis by demonstrating impaired left ventricular function, high central venous pressures and high pulmonary artery pressures.
Blood tests are performed for electrolytes (sodium, potassium) and markers of renal function (creatinine, urea). Liver enzymes, inflammatory markers (usually C-reactive protein) and a complete blood count as well as coagulation studies (PT, aPTT) are also typically requested. B-type natriuretic peptide (BNP) is available in many hospitals, sometimes even as a point-of-care test. Low levels of BNP (<100 pg/ml) suggest a cardiac cause is unlikely.
In those with underlying heart disease, effective control of congestive symptoms prevents pulmonary edema.
Dexamethasone is in widespread use for the prevention of high altitude pulmonary edema. Sildenafil is used as a preventive treatment for altitude-induced pulmonary edema and pulmonary hypertension, the mechanism of action is via phosphodiesterase inhibition which raises cGMP, resulting in pulmonary arterial vasodilation and inhibition of smooth muscle cell proliferation. While this effect has only recently been discovered, sildenafil is already becoming an accepted treatment for this condition, in particular in situations where the standard treatment of rapid descent has been delayed for some reason.
Endogenous lipoid pneumonia and non-specific interstitial pneumonitis has been seen prior to the development of pulmonary alveolar proteinosis in a child.
Patients who develop PSH after traumatic injury have longer hospitalization and longer durations in intensive care in cases where ICU treatment is necessary. Patients often are more vulnerable to infections and spend longer times on ventilators, which can lead to an increased risk of various lung diseases. PSH does not affect mortality rate, but it increases the amount of time it takes a patient to recover from injury, compared to patients with similar injuries who do not develop PSH episodes. It often takes patients who develop PSH longer to reach similar levels of the brain activity seen in patients who do not develop PSH, although PSH patients do eventually reach these same levels.
Treatment is with corticosteroids and possibly intravenous immunoglobulins.
Diagnosing PSH can be very difficult due to the lack of common terminology in circulation and a lack of diagnostic criteria. Different systems for diagnosis have been proposed, but a universal system has not been embraced. One example of a proposed system of diagnosis requires observation confirmation for four of the six following symptoms: fever greater than 38.3 degrees Celsius, tachycardia classified as a heart rate of 120 bpm or higher, hypertension classified as a systolic pressure higher than 160 mmHg or a pulse pressure higher than 80 mmHg, tachypnea classified as respiration rate higher than 30 breaths per minute, excess sweating, and severe dystonia. Ruling out other diseases or syndromes that show similar symptoms is imperative to diagnosis as well. Sepsis, encephalitis, neuroleptic malignant syndrome,
malignant hyperthermia, lethal catatonia, spinal cord injury (not associated with PSH), seizures, and hydrocephalus (this can be associated with PSH) are examples of diagnoses that should be considered due to the manifestation of similar symptoms before confirming a diagnosis of PSH. PSH has no simple radiological features that can be observed or detected on a scan.
Night sweats, also known as nocturnal hyperhidrosis, is the occurrence of excessive sweating during sleep. The person may or may not also suffer from excessive perspiration while awake.
One of the most common causes of night sweats in women over 40 is the hormonal changes related to menopause and perimenopause. This is a very common occurrence during the menopausal transition years.
While night sweats might be relatively harmless, it can also be a sign of a serious underlying disease. It is important to distinguish night sweats due to medical causes from those that occur simply because the sleep environment is too warm, either because the bedroom is unusually hot or because there are too many covers on the bed. Night sweats caused by a medical condition or infection can be described as "severe hot flashes occurring at night that can drench sleepwear and sheets, which are not related to the environment". Some of the underlying medical conditions and infections that cause these severe night sweats can be life-threatening and should promptly be investigated by a medical practitioner.
If the person is hemodynamically unstable or other treatments have not been effective, synchronized electrical cardioversion may be used. In children this is often done with a dose of 0.5 to 1 J/Kg.
A doctor will listen to the heart with stethoscope. A "tumor plop" (a sound related to movement of the tumor), abnormal heart sounds, or a murmur similar to the mid-diastolic rumble of mitral stenosis may be heard. These sounds may change when the patient changes position.
Right atrial myxomas rarely produce symptoms until they have grown to be at least 13 cm (about 5 inches) wide.
Tests may include:
- Echocardiogram and Doppler study
- Chest x-ray
- CT scan of chest
- Heart MRI
- Left heart angiography
- Right heart angiography
- ECG—may show atrial fibrillation
Blood tests:
A FBC may show anemia and increased WBCs (white blood cells). The erythrocyte sedimentation rate (ESR) is usually increased.
A number of physical maneuvers increase the resistance of the AV node to transmit impulses (AV nodal block), principally through activation of the parasympathetic nervous system, conducted to the heart by the vagus nerve. These manipulations are collectively referred to as vagal maneuvers.
The valsalva maneuver should be the first vagal maneuver tried and works by increasing intra-thoracic pressure and affecting baroreceptors (pressure sensors) within the arch of the aorta. It is carried out by asking the patient to hold his/her breath while trying to exhale forcibly as if straining during a bowel movement. Holding the nose and exhaling against the obstruction has a similar effect.
There are other vagal maneuvers including: holding one's breath for a few seconds, coughing, plunging the face into cold water, (via the diving reflex), drinking a glass of ice cold water, and standing on one's head. Carotid sinus massage, carried out by firmly pressing the bulb at the top of "one" of the carotid arteries in the neck, is effective but is often not recommended in the elderly due to the potential risk of stroke in those with atherosclerotic plaque in the carotid arteries.
Pressing down gently on the top of closed eyes may also bring heartbeat back to normal rhythm for some people with atrial or supraventricular tachycardia (SVT).
The condition may be a sign of various disease states, including but not exclusive to the following:
- Cancers
- Lymphoma
- Leukemia
- Infections
- HIV/AIDS
- Tuberculosis
- Mycobacterium avium-intracellulare infection
- Infectious mononucleosis
- Fungal infections (histoplasmosis, coccidioidomycosis)
- Lung abscess
- Infective endocarditis
- Brucellosis
- Pneumocystis pneumonia (most often - in immunocompromised individuals)
- Endocrine disorders
- Menopause
- Premature ovarian failure
- Hyperthyroidism
- Diabetes mellitus (nocturnal hypoglycemia)
- Endocrine tumors (pheochromocytoma, carcinoid)
- Orchiectomy
- Rheumatic disorders
- Takayasu's arteritis
- Temporal arteritis
- Other
- Obstructive sleep apnea
- Gastroesophageal reflux disease
- Chronic fatigue syndrome
- Fibromyalgia
- Granulomatous disease
- Chronic eosinophilic pneumonia
- Lymphoid hyperplasia
- Diabetes insipidus
- Prinzmetal's angina
- Anxiety
- Pregnancy
- Drugs
- Antipyretics (salicylates, acetaminophen)
- Antihypertensives
- Dinitrophenol - a common side effect
- Phenothiazines
- Drug withdrawal: ethanol, benzodiazepines, heroin (and other opiates),
- Over-bundling
- Autonomic over-activity
- IBD (inflammatory bowel disease) - Crohn's disease/ulcerative colitis
Antibiotics do not help the many lower respiratory infections which are caused by parasites or viruses. While acute bronchitis often does not require antibiotic therapy, antibiotics can be given to patients with acute exacerbations of chronic bronchitis. The indications for treatment are increased dyspnoea, and an increase in the volume or purulence of the sputum. The treatment of bacterial pneumonia is selected by considering the age of the patient, the severity of the illness and the presence of underlying disease. Amoxicillin and doxycycline are suitable for many of the lower respiratory tract infections seen in general practice.
Middle-of-the-night insomnia is often treated with medication, although currently Intermezzo (zolpidem tartrate sublingual tablets) is the only Food and Drug Administration-approved medication specifically for treating MOTN awakening. Because most medications usually require 6–8 hours of sleep to avoid lingering effects the next day, these are often used every night at bedtime to prevent awakenings. Medication may not be prescribed in some cases, especially if the cause turns out to be the patient ingesting too much fluid during the day or just before they go to sleep.
Sleep restriction therapy and stimulus control therapy as described in insomnia have shown significance in treating middle of night insomnia.
Some studies have shown that zaleplon, which has a short elimination half-life, may be suitable for middle-of-the-night administration because it does not impair next day performance.
Nocturnal awakenings are more common in older patients and have been associated with depressive disorders, chronic pain, obstructive sleep apnea, obesity, alcohol consumption, hypertension, gastroesophageal reflux disease, heart disease, menopause, prostate problems, and bipolar disorders.
Nocturnal awakenings can be mistaken as shift work disorder.
There are a number of management options for bedwetting. The following options apply when the bedwetting is not caused by a specifically identifiable medical condition such as a bladder abnormality or diabetes. Treatment is recommended when there is a specific medical condition such as bladder abnormalities, infection, or diabetes. It is also considered when bedwetting may harm the child's self-esteem or relationships with family/friends. Only a small percentage of bedwetting is caused by a specific medical condition, so most treatment is prompted by concern for the child's "emotional" welfare. Behavioral treatment of bedwetting overall tends to show increased self-esteem for children.
Parents become concerned much earlier than doctors. A study in 1980 asked parents and physicians the age that children should stay dry at night. The average parent response was 2.75 years old, while the average physician response was 5.13 years old.
Punishment is not effective and can interfere with treatment.
Lower respiratory tract infections place a considerable strain on the health budget and are generally more serious than upper respiratory infections.
Most pharmacological treatments work poorly, but the best treatment is a low dosage of clonazepam, a muscle relaxant. Patients may also benefit from other benzodiazepines, phenobarbital, and other anticonvulsants such as valproic acid. Affected individuals have reported garlic to be effective for softening the attacks, but no studies have been done on this.
Thorough history regarding frequency of bedwetting, any period of dryness in between, associated daytime symptoms, constipation, and encopresis should be sought.
Since paroxysmal exercise-induced dystonia is such a rare disorder it makes it difficult to study the disease and find consistencies. Many of the current studies seem to have contradicting conclusion but this is due to the fact that studies are usually limited to a very small number of test subjects. With such small numbers it is hard to determine what is a trend and what is random when in comes to characterizing the disease. Further study is needed to find better diagnostic techniques and treatments for PED. Patients with PED are living a limited lifestyle since simple tasks like walking and exercise are often impossible.
Benign paroxysmal torticollis disappears in the early years of life with no medical intervention.
However, some cases of benign paroxysmal torticollis cases can evolve into benign paroxysmal vertigo of childhood, migrainous vertigo or typical migraines.
Diagnosis is similar, but slightly different for each type of PD. Some types are more understood than others, and therefore have more criteria for diagnosis.