Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
The disease incidence varies widely depending on the geographical location. The most extensive epidemiological survey on this subject has been carried out by Dharmasena et al. who analysed the number of neonates who developed neonatal conjunctivitis in England from 2000 to 2011. In addition to the incidence of this sight threatening infection they also investigated the time trends of the disease. According to them the incidence of Neonatal conjunctivitis (Ophthalmia Neonatorum) in England was 257 (95% confidence interval: 245 to 269) per 100,000 in 2011.
Cultures are not often taken or needed as most cases resolve either with time or typical antibiotics. Swabs for bacterial culture are necessary if the history and signs suggest bacterial conjunctivitis but there is no response to topical antibiotics. Viral culture may be appropriate in epidemic case clusters.
A patch test is used to identify the causative allergen in the case where conjunctivitis is caused by allergy.
Conjunctival scrapes for cytology can be useful in detecting chlamydial and fungal infections, allergy, and dysplasia, but are rarely done because of the cost and the general lack of laboratory staff experienced in handling ocular specimens. Conjunctival incisional biopsy is occasionally done when granulomatous diseases ("e.g.", sarcoidosis) or dysplasia are suspected.
Treatment of herpes of the eye is different based on its presentation: epithelial keratitis is caused by live virus while stromal disease is an immune response and metaherpetic ulcer results from inability of the corneal epithelium to heal:
A specific clinical diagnosis of HSV as the cause of dendritic keratitis can usually be made by ophthalmologists and optometrists based on the presence of characteristic clinical features. Diagnostic testing is seldom needed because of its classic clinical features and is not useful in stromal keratitis as there is usually no live virus. Laboratory tests are indicated in complicated cases when the clinical diagnosis is uncertain and in all cases of suspected neonatal herpes infection:
- Corneal smears or impression cytology specimens can be analyzed by culture, antigen detection, or fluorescent antibody testing. Tzanck smear, i.e.Papanicolaou staining of corneal smears, show multinucleated giant cells and intranuclear inclusion bodies, however, the test is low in sensitivity and specificity.
- DNA testing is rapid, sensitive and specific. However, its high cost limits its use to research centers.
- Demonstration of HSV is possible with viral culture.
- Serologic tests may show a rising antibody titer during primary infection but are of no diagnostic assistance during recurrent episodes.
Classification can be either by cause or by extent of the inflamed area.
Diagnosis of FVR is usually by clinical signs, especially corneal ulceration. Definitive diagnosis can be done by direct immunofluorescence or virus isolation. However, many healthy cats are subclinical carriers of feline herpes virus, so a positive test for FHV-1 does not necessarily indicate that signs of an upper respiratory tract infection are due to FVR. Early in the course of the disease, histological analysis of cells from the tonsils, nasal tissue, or nictitating membrane (third eyelid) may show inclusion bodies (a collection of viral particles) within the nucleus of infected cells.
Antibiotic ointment is typically applied to the newborn's eyes within 1 hour of birth as prevention against gonococcal ophthalmia. This maybe erythromycin, tetracycline, or silver nitrate.
The heterophile antibody test works by agglutination of red blood cells from guinea pig, sheep and horse. This test is specific but not particularly sensitive (with a false-negative rate of as high as 25% in the first week, 5–10% in the second, and 5% in the third). About 90% of patients have heterophile antibodies by week 3, disappearing in under a year. The antibodies involved in the test do not interact with the Epstein–Barr virus or any of its antigens.
The monospot test is not recommended for general use by the CDC due to its poor accuracy.
About 10% of people who present a clinical picture of infectious mononucleosis do not have an acute Epstein–Barr-virus infection. A differential diagnosis of acute infectious mononucleosis needs to take into consideration acute cytomegalovirus infection and "Toxoplasma gondii" infections. Because their management is much the same, it is not always helpful, or possible, to distinguish between Epstein–Barr-virus mononucleosis and cytomegalovirus infection. However, in pregnant women, differentiation of mononucleosis from toxoplasmosis is important, since it is associated with significant consequences for the fetus.
Acute HIV infection can mimic signs similar to those of infectious mononucleosis, and tests should be performed for pregnant women for the same reason as toxoplasmosis.
People with infectious mononucleosis are sometimes misdiagnosed with a streptococcal pharyngitis (because of the symptoms of fever, pharyngitis and adenopathy) and are given antibiotics such as ampicillin or amoxicillin as treatment.
Other conditions from which to distinguish infectious mononucleosis include leukemia, tonsillitis, diphtheria, common cold and influenza (flu).
There is a vaccine for FHV-1 available (ATCvet code: , plus various combination vaccines), but although it limits or weakens the severity of the disease and may reduce viral shedding, it does not prevent infection with FVR. Studies have shown a duration of immunity of this vaccine to be at least three years. The use of serology to demonstrate circulating antibodies to FHV-1 has been shown to have a positive predictive value for indicating protection from this disease.
The bacteria invade the lacrimal glands of the eye, causing keratitis, uveitis, and corneal ulceration. Cattle show signs of pain, increased lacrimation, excessive blinking, and conjunctivitis. More severe cases may show systemic signs such as anorexia and weight loss. Chronic untreated cases can become blind. Diagnosis is usually based on the clinical signs, but the bacteria can be cultured from lacrimal swabs, or visualised on smears of lacrimal secretions.
Shade, insect repellent-impregnated ear tags, and lower stocking rates may help prevent IBK. Early identification of the disease also helps prevent spread throughout the herd. Treatment is with early systemic use of a long-acting antibiotic such as tetracycline or florfenicol. Subconjunctival injections with procaine penicillin or other antibiotics are also effective, providing a "bubble" of antibiotic which releases into the eye slowly over several days.
Anti-inflammatory therapy can help shorten recovery times, but topical corticosteroids should be used with care if corneal ulcers are present.
"M. bovis" uses several different serotyped fimbriae as virulence factors, consequently pharmaceutical companies have exploited this to create vaccines. However, currently available vaccines are not reliable.
There is no specific treatment for infectious mononucleosis, other than treating the symptoms. In severe cases, steroids such as corticosteroids may be used to control the swelling of the throat and tonsils. Currently, there are no antiviral drugs or vaccines available.
It is important to note that symptoms related to infectious mononucleosis caused by EBV infection seldom last for more than 4 months. When such an illness lasts more than 6 months, it is frequently called chronic EBV infection. However, valid laboratory evidence for continued active EBV infection is seldom found in these patients. The illness should be investigated further to determine if it meets the criteria for chronic fatigue syndrome, or CFS. This process includes ruling out other causes of chronic illness or fatigue.
The symptoms of phlyctenular keratoconjunctivitis are primarily treated with application of an appropriate corticosteroid eye drop, such as prednisolone acetate (Pred Forte) or loteprednol (Lotemax). Loteprednol is increasingly preferred due to its lower risk of elevating intraocular pressure. The corticosteroid suppresses the immune response, reducing inflammation and improving most symptoms.
The causative agent (i.e. the source of the antigen that triggered the hypersensitive immune response) should also be identified. "Staphylococcus aureus" is usually the primary suspect, along with "Mycobacterium tuberculosis" in areas where TB is endemic, followed by "Chlamydia trachomatis". Active bacterial infections may be treated with a topical antibiotic or a combination antibiotic-steroid eye drop, such as tobramycin/dexamethasone (Tobradex). An oral tetracycline antibiotic (such as doxycycline) may be used in systemic or particularly severe/intractable infections. Erythromycin may be an effective alternative, especially in pediatric cases where the side effects of tetracyclines are unacceptable.
Artificial tears can reduce dryness and discomfort from corneal lesions. Photophobic discomfort can be mitigated with dark sunglasses.
Biochemical tests used in the identification of infectious agents include the detection of metabolic or enzymatic products characteristic of a particular infectious agent. Since bacteria ferment carbohydrates in patterns characteristic of their genus and species, the detection of fermentation products is commonly used in bacterial identification. Acids, alcohols and gases are usually detected in these tests when bacteria are grown in selective liquid or solid media.
The isolation of enzymes from infected tissue can also provide the basis of a biochemical diagnosis of an infectious disease. For example, humans can make neither RNA replicases nor reverse transcriptase, and the presence of these enzymes are characteristic of specific types of viral infections. The ability of the viral protein hemagglutinin to bind red blood cells together into a detectable matrix may also be characterized as a biochemical test for viral infection, although strictly speaking hemagglutinin is not an "enzyme" and has no metabolic function.
Serological methods are highly sensitive, specific and often extremely rapid tests used to identify microorganisms. These tests are based upon the ability of an antibody to bind specifically to an antigen. The antigen, usually a protein or carbohydrate made by an infectious agent, is bound by the antibody. This binding then sets off a chain of events that can be visibly obvious in various ways, dependent upon the test. For example, "Strep throat" is often diagnosed within minutes, and is based on the appearance of antigens made by the causative agent, "S. pyogenes", that is retrieved from a patients throat with a cotton swab. Serological tests, if available, are usually the preferred route of identification, however the tests are costly to develop and the reagents used in the test often require refrigeration. Some serological methods are extremely costly, although when commonly used, such as with the "strep test", they can be inexpensive.
Complex serological techniques have been developed into what are known as Immunoassays. Immunoassays can use the basic antibody – antigen binding as the basis to produce an electro-magnetic or particle radiation signal, which can be detected by some form of instrumentation. Signal of unknowns can be compared to that of standards allowing quantitation of the target antigen. To aid in the diagnosis of infectious diseases, immunoassays can detect or measure antigens from either infectious agents or proteins generated by an infected organism in response to a foreign agent. For example, immunoassay A may detect the presence of a surface protein from a virus particle. Immunoassay B on the other hand may detect or measure antibodies produced by an organism's immune system that are made to neutralize and allow the destruction of the virus.
Instrumentation can be used to read extremely small signals created by secondary reactions linked to the antibody – antigen binding. Instrumentation can control sampling, reagent use, reaction times, signal detection, calculation of results, and data management to yield a cost effective automated process for diagnosis of infectious disease.
The syndrome is marked by the appearance of characteristic lesions, known as phlyctenules, on the cornea and/or conjunctiva. These usually manifest as small (1 - 3 or 1 - 4 mm) raised nodules, pinkish-white or yellow in color, which may ulcerate (or, more rarely, necrose) and are often surrounded by dilated blood vessels. Corneal lesions are usually triangular in shape, with the base at the limbus and the apex pointing towards the center of the cornea.
Given the wide range of bacteria, viruses, and other pathogens that cause debilitating and life-threatening illness, the ability to quickly identify the cause of infection is important yet often challenging. For example, more than half of cases of encephalitis, a severe illness affecting the brain, remain undiagnosed, despite extensive testing using state-of-the-art clinical laboratory methods. Metagenomics is currently being researched for clinical use, and shows promise as a sensitive and rapid way to diagnose infection using a single all-encompassing test. This test is similar to current PCR tests; however, amplification of genetic material is unbiased rather than using primers for a specific infectious agent. This amplification step is followed by next-generation sequencing and alignment comparisons using large databases of thousands of organismic and viral genomes.
Metagenomic sequencing could prove especially useful for diagnosis when the patient is immunocompromised. An ever-wider array of infectious agents can cause serious harm to individuals with immunosuppression, so clinical screening must often be broader. Additionally, the expression of symptoms is often atypical, making clinical diagnosis based on presentation more difficult. Thirdly, diagnostic methods that rely on the detection of antibodies are more likely to fail. A broad, sensitive test for pathogens that detects the presence of infectious material rather than antibodies is therefore highly desirable.
Keratoconjunctivitis is inflammation ("-itis") of the cornea and conjunctiva.
When only the cornea is inflamed, it is called "keratitis"; when only the conjunctiva is inflamed, it is called "conjunctivitis".
There are several potential causes of the inflammation:
- Keratoconjunctivitis sicca is used when the inflammation is due to dryness. ("Sicca" means "dryness" in medical contexts.) It occurs with 20% of rheumatoid arthritis patients.
- The term "Vernal keratoconjunctivitis" (VKC) is used to refer to keratoconjunctivitis occurring in spring, and is usually considered to be due to allergens.
- "Atopic keratoconjunctivitis" is one manifestation of atopy.
- "Epidemic keratoconjunctivitis" is caused by an adenovirus infection.
- "Infectious bovine keratoconjunctivitis" (IBK) is a disease affecting cattle caused by the bacteria "Moraxella bovis".
- "Pink eye in sheep and goat" is another infectious keratoconjunctivitis of veterinary concern, mostly caused by "Chlamydophila pecorum"
- "Superior limbic keratoconjunctivitis" is thought to be caused by mechanical trauma.
- "Keratoconjunctivitis photoelectrica" (arc eye) means inflammation caused by photoelectric UV light. It is a type of ultraviolet keratitis. Such UV exposure can be caused by arc welding without wearing protective eye glass, or by high altitude exposure from sunlight reflected from snow ("snow blindness"). The inflammation will only appear after about 6 to 12 hours. It can be treated by rest, as the inflammation usually heals after 24–48 hours. Proper eye protection should be worn to prevent keratoconjunctivitis photoelectrica.
Diagnosis of BMCF depends on a combination of history and symptoms, histopathology and detection in the blood or tissues of viral antibodies by ELISA or of viral DNA by PCR. The characteristic histologic lesions of MCF are lymphocytic arteritis with necrosis of the blood vessel wall and the presence of large T lymphocytes mixed with other cells. The similarity of MCF clinical signs to other enteric diseases, for example blue tongue, mucosal disease and foot and mouth make laboratory diagnosis of MCF important. The world organisation for animal health recognises histopathology as the definitive diagnostic test, but laboratories have adopted other approaches with recent developments in molecular virology. No vaccine has as yet been developed.
Antigen detection, polymerase chain reaction assay, virus isolation, and serology can be used to identify adenovirus infections. Adenovirus typing is usually accomplished by hemagglutination-inhibition and/or neutralization with type-specific antisera. Since adenovirus can be excreted for prolonged periods, the presence of virus does not necessarily mean it is associated with disease.
Based on severity, authors have classified VKC into clinical grades:
Grade 0 - Absence of symptoms
Grade 1 MILD - Symptoms but no corneal involvement
Grade 2 MODERATE - Symptoms with photophobia but no corneal involvement
Grade 3 SEVERE - Symptoms, photophobia, milfd to moderate SPK's OR with Diffuse SPK or corneal ulcer
Dry eyes can usually be diagnosed by the symptoms alone. Tests can determine both the quantity and the quality of the tears. A slit lamp examination can be performed to diagnose dry eyes and to document any damage to the eye.
A Schirmer's test can measure the amount of moisture bathing the eye. This test is useful for determining the severity of the condition. A five-minute Schirmer's test with and without anesthesia using a Whatman #41 filter paper 5 mm wide by 35 mm long is performed. For this test, wetting under 5 mm with or without anesthesia is considered diagnostic for dry eyes.
If the results for the Schirmer's test are abnormal, a Schirmer II test can be performed to measure reflex secretion. In this test, the nasal mucosa is irritated with a cotton-tipped applicator, after which tear production is measured with a Whatman #41 filter paper. For this test, wetting under 15 mm after five minutes is considered abnormal.
A tear breakup time (TBUT) test measures the time it takes for tears to break up in the eye. The tear breakup time can be determined after placing a drop of fluorescein in the cul-de-sac.
A tear protein analysis test measures the lysozyme contained within tears. In tears, lysozyme accounts for approximately 20 to 40 percent of total protein content.
A lactoferrin analysis test provides good correlation with other tests.
The presence of the recently described molecule Ap4A, naturally occurring in tears, is abnormally high in different states of ocular dryness. This molecule can be quantified biochemically simply by taking a tear sample with a plain Schirmer test. Utilizing this technique it is possible to determine the concentrations of Ap4A in the tears of patients and in such way diagnose objectively if the samples are indicative of dry eye.
The Tear Osmolarity Test has been proposed as a test for dry eye disease. Tear osmolarity may be a more sensitive method of diagnosing and grading the severity of dry eye compared to corneal and conjunctival staining, tear break-up time, Schirmer test, and meibomian gland grading. Others have recently questioned the utility of tear osmolarity in monitoring dry eye treatment.
Diagnosis is done by direct observation under magnified view of slit lamp revealing the ulcer on the cornea. The use of fluorescein stain, which is taken up by exposed corneal stroma and appears green, helps in defining the margins of the corneal ulcer, and can reveal additional details of the surrounding epithelium. Herpes simplex ulcers show a typical dendritic pattern of staining. Rose-Bengal dye is also used for supra-vital staining purposes, but it may be very irritating to the eyes. In descemetoceles, the Descemet's membrane will bulge forward and after staining will appear as a dark circle with a green boundary, because it does not absorb the stain. Doing a corneal scraping and examining under the microscope with stains like Gram's and KOH preparation may reveal the bacteria and fungi respectively. Microbiological culture tests may be necessary to isolate the causative organisms for some cases. Other tests that may be necessary include a Schirmer's test for keratoconjunctivitis sicca and an analysis of facial nerve function for facial nerve paralysis.
Hygiene, in particular the regular cleaning of the glans, is generally considered sufficient to prevent infection and inflammation of the foreskin. Full retraction of the foreskin may not be possible in boys younger than about ten years and some may not be able to fully retract their foreskin for cleaning until their late teens.
Blood analysis shows leukopenia, thrombocytopenia and moderately elevated liver enzymes. Differential diagnosis must be made with typhus, typhoid and atypical pneumonia by Mycoplasma, Legionella or Q fever. Exposure history is paramount to diagnosis.
Diagnosis involves microbiological cultures from respiratory secretions of patients or serologically with a fourfold or greater increase in antibody titers against "C. psittaci" in blood samples combined with the probable course of the disease. Typical inclusions called "Leventhal-Cole-Lillie bodies" can be seen within macrophages in BAL (bronchoalveolar lavage) fluid. Culture of "C. psittaci" is hazardous and should only be carried out in biosafety laboratories.