Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Since it is a rare disease, it remains a diagnosis of exclusion of other conditions with similar symptoms. The diagnosis is supported by the results of imaging studies such as computed tomography or magnetic resonance imaging, ultrasound of the abdomen (with or without doppler imaging) or intravenous urography.
Specialist vascular ultrasonographers should routinely look for left ovarian vein reflux in patients with lower limb varices especially if not associated with long or short saphenous reflux. The clinical pattern of varices differs between the two types of lower limb varices.
CT scanning is used to exclude abdominal or pelvic pathology. CT-Angiography/Venography can often demonstrate left ovarian vein reflux and image an enlarged left ovarian vein but is less sensitive and much more expensive than duplex Doppler ultrasound examination. Ultrasound requires that the ultrasonographer be experienced in venous vascular ultrasound and so is not always readily available. A second specialist ultrasound exam remains preferable to a CT scan.
As a wide range of pelvic and abdominal pathology can cause symptoms consistent with those symptoms due to left ovarian vein reflux, prior to embolisation of the left ovarian vein, a careful search for such diagnoses is essential. Consultation with general surgeons, gynaecologists, and possibly CT scanning should always be considered.
Treatment consists of painkillers and surgical ablation of the dilated vein. This can be accomplished with open abdominal surgery (laparotomy) or keyhole surgery (laparoscopy). Recently, the first robot-assisted surgery was described.
Another approach to treatment involves catheter-based embolisation, often preceded by phlebography to visualise the vein on X-ray fluoroscopy.
Ovarian vein coil embolisation is an effective and safe treatment for pelvic congestion syndrome and lower limb varices of pelvic origin. Many patients with lower limb varices of pelvic origin respond to local treatment i.e. ultrasound guided sclerotherapy. In those cases, ovarian vein coil embolisation should be considered second line treatment to be used if veins recur in a short time period i.e. 1–3 years. This approach allows further pregnancies to proceed if desired. Coil embolisation is not appropriate if a future pregnancy is possible. This treatment has largely superseded operative options.
Coil embolisation requires exclusion of other pelvic pathology, expertise in endovascular surgery, correct placement of appropriate sized coils in the pelvis and also in the upper left ovarian vein, careful pre- and post-procedure specialist vascular ultrasound imaging, a full discussion of the procedure with the patient i.e. informed consent. Complications, such as coil migration, are rare but reported. Their sequelae are usually minor.
If a Nutcracker compression (see below) is discovered, stenting of the renal vein should be considered before embolization of the ovarian vein. Reducing outflow obstruction should always be the main objective.
Diagnosis can be made using ultrasound or laparoscopy testing. The condition can also be diagnosed with a venogram, CT scan, or an MRI. Ultrasound is the diagnostic tool most commonly used. Recent research from a leading pelvic venous unit has suggested that Transvaginal Duplex Ultrasound scanning is the "Gold Standard" test for pelvic venous reflux. The same research group has shown that the size of the veins - as shown by venography and also used as the diagnostic criteria in CT and MRI - is not relevant and only Transvaginal Duplex Ultrasound shows the venous reflux that causes the problem.
Ovarian torsion is difficult to diagnose accurately, and operation is often performed before certain diagnosis is made. A study at an obstetrics and gynaecology department found that preoperative diagnosis of ovarian torsion was confirmed in only 46% of people.
Gynecologic ultrasonography is the imaging modality of choice. Use of doppler ultrasound in the diagnosis has been suggested. However, doppler flow is not always absent in torsion – the definitive diagnosis is often made in the operating room.
Lack of ovarian blood flow on doppler sonography seems to be a good predictor of ovarian torsion. Women with pathologically low flow are more likely to have OT (77% vs. 29% in a study). The sensitivity and specificity of abnormal ovarian flow for OT are 44% and 92%, respectively, with a positive and negative predictive value of 78% and 71%, respectively. Specific flow features on Doppler sonography include:
- Little or no intra-ovarian venous flow. This is commonly seen in ovarian torsion.
- Absent arterial flow. This is a less common finding in ovarian torsion
- Absent or reversed diastolic flow
Normal vascularity does not exclude intermittent torsion. There may occasionally be normal Doppler flow because of the ovary's dual blood supply from both the ovarian arteries and uterine arteries.
Other ultrasonographic features include:
- Enlarged hypoechogenic or hyperechogenic ovary
- Peripherally displaced ovarian follicles
- Free pelvic fluid. This may be seen in more than 80% of cases
- "Whirlpool sign" of twisted vascular pedicle
- Underlying ovarian lesion can often be found
- Uterus may be slightly deviated towards the torted ovary.
However, according to recent data, this classification is inadequate, because the ovary cannot rupture without bleeding.
Therefore, a new pathology has been devised in which the condition is divided according to severity: mild, moderate and severe (depending on the magnitude of blood loss).
The risk of the development of a lymphocele is positively correlated to the extent of the removal of lymphatic tissue during surgery (lymphadenectomy). Surgery destroys and disrupts the normal channels of lymph flow. If the injury is minor, collateral channels will transport lymph fluid, but with extensive damage, fluid may accumulate in an anatomic space resulting in a lymphocele. Typical operations leading to lymphocysts are renal transplantation and radical pelvic surgery with lymph node removal because of prostatic or gynecologic cancer. Other factors that may predispose of lymphocele development are preoperative radiation therapy, heparin prophylaxis (used to prevent deep vein thrombosis), and tumor characteristics. After radical surgery for cervical and ovarian cancer studies with follow-up CT found lymphoceles in 20% and 32%, respectively. Typically they develop within 4 months after surgery.
Surgical exploration and of possible ovarian tissue is required for the definitive diagnosis of ORS, and treatment by excision of the remnant ovarian tissue may be performed during the same procedure. For women who are not candidates for surgery, a clinical diagnosis can be made based on the symptoms and levels (follicle-stimulating hormone and estradiol, after bilateral oophorectomy) and/or findings consistent with the presence of residual ovarian tissue. Laparoscopy and histological assessment can aid in diagnosis.
Ovarian cysts are usually diagnosed by ultrasound, CT scan, or MRI, and correlated with clinical presentation and endocrinologic tests as appropriate.
The risk of ovarian remnant (ORS) is increased by incomplete removal of the ovarian at the time of oophorectomy. Surgical factors that contribute to incomplete removal include those that limit surgical exposure of the ovary, or compromise surgical technique. Factors may include:
- adhesions – these can limit visualization of the ovary and may also cause it to adhere to surrounding tissues. Adhesions are often present due to preexisting conditions and/or prior surgeries. In the majority of cases reported since 2007, endometriosis was the most common indication for the initial oophorectomy in patients who subsequently had ORS. Endometriosis increases the risk for functional ovarian tissue being embedded into adjacent structures, making complete excision of tissue challenging.
- Anatomic variations - unusual location of ovarian tissue, for example
- Intraoperative bleeding
- Poor surgical technique – this may include failure to obtain adequate exposure or restore adequate anatomy, or imprecise choice of incision site
Ovarian remnant (ORS) may first be considered in women who have undergone oophorectomy and have suggestive symptoms, the presence of a mass, or evidence of persistent ovarian function (by symptoms or laboratory testing). A history of oophorectomy is required, by definition, to make the diagnosis. Notes regarding the indication for the procedure and the procedure itself should be reviewed and may include prior abdominal or pelvic surgery, endometriosis, and/or poor surgical visualization. If ORS is possible, pelvic should be performed to evaluate for a pelvic mass.[1]
Nutcracker syndrome can be diagnosed with:
- Left renal venography—considered to be the gold standard test.
- Computed tomography (CT).
- Abdominal ultrasonography—not definitive but has been found to be useful.
Early treatment options include pain medication using nonsteroidal anti-inflammatory drugs, suppression of ovarian function, and alternative therapies such as acupuncture and physical therapy.
The surgical option involves stopping blood flow to the varicose veins using noninvasive surgical techniques such as a procedure called embolization. The procedure requires an overnight stay in hospital, and is done using local anesthetic. Patients report an 80% success rate, as measured by the amount of pain reduction experienced.
Many lymphoceles are asymptomatic. Larger lymphoceles may cause symptoms related to compression of adjacent structures leading to lower abdominal pain, abdominal fullness, constipation, urinary frequency, and edema of the genitals and/or legs. Serious sequelae could develop and include infection of the lymphocele, obstruction and infection of the urinary tract, intestinal obstruction, venous thrombosis, pulmonary embolism, chylous ascites and lymphatic fistula formation.
On clinical examination the skin may be reddened and swollen and a mass felt. Ultrasonography or CT scan will help to establish a diagnosis.
Other fluid collections to be considered in the differential diagnosis are urinoma, seroma, hematoma, as well as collections of pus. Also, when lower limb edema is present, venous thrombosis needs to be considered.
Follow-up imaging in women of reproductive age for incidentally discovered simple cysts on ultrasound is not needed until 5 cm, as these are usually normal ovarian follicles. Simple cysts 5 to 7 cm in premenopausal females should be followed yearly. Simple cysts larger than 7 cm require further imaging with MRI or surgical assessment. Because they are large, they cannot be reliably assessed by ultrasound alone because it may be difficult to see the soft tissue nodularity or thickened septation at their posterior wall due to limited penetrance of the ultrasound beam. For the corpus luteum, a dominant ovulating follicle that typically appears as a cyst with circumferentially thickened walls and crenulated inner margins, follow up is not needed if the cyst is less than 3 cm in diameter. In postmenopausal patients, any simple cyst greater than 1 cm but less than 7 cm needs yearly follow-up, while those greater than 7 cm need MRI or surgical evaluation, similar to reproductive age females.
For incidentally discovered dermoids, diagnosed on ultrasound by their pathognomonic echogenic fat, either surgical removal or yearly follow up is indicated, regardless of patient age. For peritoneal inclusion cysts, which have a crumpled tissue-paper appearance and tend to follow the contour of adjacent organs, follow up is based on clinical history. Hydrosalpinx, or fallopian tube dilation, can be mistaken for an ovarian cyst due to its anechoic appearance. Follow-up for this is also based on clinical presentation.
For multiloculate cysts with thin septation less than 3 mm, surgical evaluation is recommended. The presence of multiloculation suggests a neoplasm, although the thin septation implies that the neoplasm is benign. For any thickened septation, nodularity, or vascular flow on color doppler assessment, surgical removal should be considered due to concern for malignancy.
Typical complaints appear during the middle or second half of the menstrual cycle.
On examination, there is marked soreness of the affected ovary, and positive symptoms of irritation of the peritoneum.
In a general blood test, a marked decrease in hemoglobin levels can be seen (in the anemic and mixed forms of ovarian apoplexy).
Pelvic ultrasound reveals in the affected ovary a large corpus luteum cyst with signs of hemorrhage in it and/or free fluid (blood) in the stomach.
Because ovarian apoplexy is an acute surgical pathology, diagnosis must be confirmed rapidly, since delays between the event and surgical intervention increases the magnitude of blood loss and may be life-threatening.
The diagnosis is made in asymptomatic pregnant women by obstetric ultrasonography. On pelvic examination a unilateral adnexal mass may be found. Typical symptoms are abdominal pain and, to a lesser degree, vaginal bleeding during pregnancy. Patients may present with hypovolemia or be in circulatory shock because of internal bleeding.
Ideally, ultrasound will show the location of the gestational sac in the ovary, while the uterine cavity is "empty", and if there is internal bleeding, it can be identified. Because of the proximity of the tube, the sonographic distinction between a tubal and an ovarian pregnancy may be difficult. Serial hCG levels generally show not the normal progressive rise.
In a series of 12 patients the mean gestation age was 45 days.
Histologically, the diagnosis has been made by Spiegelberg criteria on the surgical specimen of the removed ovary and tube. However, the tube and ovary are not usually removed as sonography allows for earlier diagnosis and surgeons strive to preserve the ovary. Prior to the introduction of Spiegelberg's criteria in 1878, the existence of ovarian pregnancy was in doubt; his criteria helped to identify the ovarian pregnancy from other ectopics:
- The gestational sac is located in the region of the ovary.
- The gestational sac is attached to the uterus by the ovarian ligament.
- Ovarian tissue is histologically proven in the wall of the gestational sac.
- The oviduct on the affected side is intact (this criterion, however, holds not true for a longer ongoing ovarian pregnancy).
An ovarian pregnancy can be mistaken for a tubal pregnancy or a hemorrhagic ovarian cyst or corpus luteum prior to surgery. Sometimes, only the presence of trophoblastic tissue during the histologic examination of material of a bleeding ovarian cyst shows that an ovarian pregnancy was the cause of the bleeding.
Ovarian pregnancies are dangerous and prone to internal bleeding. Thus, when suspected, intervention is called for.
Traditionally, an explorative laparotomy was performed, and once the ovarian pregnancy was identified, an oophorectomy or salpingo-oophorectomy was performed, including the removal of the pregnancy. Today, the surgery can often be performed via laparoscopy. The extent of surgery varies according to the amount of tissue destruction that has
occurred. Patients with an ovarian pregnancy have a good prognosis for future fertility and therefore conservative surgical management is advocated. Further, in attempts to preserve ovarian tissue, surgery may involve just the removal of the pregnancy with only a part of the ovary. This can be accomplished by an ovarian wedge resection.
Ovarian pregnancies have been successfully treated with methotrexate since it was introduced in the management of ectopic pregnancy in 1988.
An ovarian pregnancy can develop together with a normal intrauterine pregnancy; such a heterotopic pregnancy will call for expert management as not to endanger the intrauterine pregnancy.
Treatment depends on the severity and symptoms. Treatments include:
- Endovascular stenting.
- Renal vein re-implantation.
- Gonadal vein embolization.
Management of the underlying defect is proportional to the severity of the clinical presentation. Leg swelling and pain is best evaluated by vascular specialists (vascular surgeons, interventional cardiologists, interventional radiologists) who both diagnose and treat arterial and venous diseases to ensure that the cause of the extremity pain is evaluated. The diagnosis needs to be confirmed with some sort of imaging that may include magnetic resonance venography, venogram and usually confirmed with intravascular ultrasound because the flattened vein may not be noticed on conventional venography. In order to prevent prolonged swelling or pain from the consequences of the backed up blood from the compressed iliac vein, flow needs to be improved out of the leg. Uncomplicated cases may be managed with compression stockings.
Severe May-Thurner syndrome may require thrombolysis if there is a recent onset of thrombosis, followed by angioplasty and stenting of the iliac vein after confirming the diagnosis with a venogram or an intravascular ultrasound. A stent may be used to support the area from further compression following angioplasty. As the name implies, there classically is not a thrombotic component in these cases, but thrombosis may occur at any time.
If the patient has extensive thrombosis, it may be appropriate to consider pharmacologic and/or mechanical (also known as pharmacomechanical) thrombectomy. This is currently being studied to determine whether this will decrease the incidence of post-thrombotic syndrome.
History and examination by a physician with characteristic signs and symptoms are sufficient in many cases in ruling out systemic causes of venous hypertension such as hypervolemia and heart failure. An ultrasound (usually a lower limbs venous ultrasonography) can detect venous obstruction or valvular incompetence as the cause, and is used for planning venous ablation procedures, but it is not necessary in suspected venous insufficiency where surgical intervention is not indicated.
There are no laboratory tests used to diagnose RVT.
Observing the patient's symptoms, medical history and imaging remain the fundamental source for diagnosing RVT. Imaging is used to detect the presence of a blood clot. In an abnormal kidney with RVT, a blood clot is present in the renal vein. In cases where the renal vein is suddenly and/or fully blocked, the kidneys will enlarge, reaching its maximum size within a week. An ultrasound imaging can be used to observe and track the size of the kidneys in RVT patients. Ultrasound is not efficient for use in detecting blood flow in the renal veins and artery. Instead a color doppler ultrasound may be used to detect renal blood flow. It is most commonly used to detect RVT in patients who have undergone renal transplantation. CT angiography is currently the top choice in diagnosing RVT. It is non-invasive, relatively cheap and fast with high accuracy. CT scanning can be used to detect renal enlargement, renal tumors, blood flow and other renal pathologies. An alternative is magnetic resonance angiography or MRA. It is non-invasive, fast and avoids radiation (unlike a CT scan) but it is relatively expensive. MRA produces detailed images of the renal blood flow, vesicle walls, the kidneys and any surrounding tissue. An inferior venocavography with selective venography can be used to rule out the diagnoses of RVT.
Treatment depends on the anatomy of the malformation as determined by angiography or Magnetic Resonance Imaging (MRI).
Clinical evaluation is the primary diagnostic tool for thrombophlebitis. Patients with thrombophlebitis complain of pain along the affected area. Some report constitutional symptoms such as low grade fever and aches. On physical examination, the skin over the affected vein exhibits erythema, warmth, swelling, and tenderness. Later in the disease, as induration subsides, erythema gives way to a ruddy or bruised color.
Duplex ultrasound identifies the presence, location and extent of venous thrombosis, and can help identify other pathology that may be a source of the patient's complaints. Ultrasound is indicated if superficial phlebitis involves or extends into the proximal one-third of the medial thigh, there is evidence for clinical extension of phlebitis, lower extremity swelling is greater than would be expected from a superficial phlebitis alone or diagnosis of superficial thrombophlebitis in question.
The diagnosis of portal vein thrombosis is usually made by ultrasound, computed tomography with contrast or magnetic resonance imaging. D-dimer levels in the blood may be elevated as a result of fibrin degradation.
Venous Insufficiency Conservative, Hemodynamic and Ambulatory treatment" is an ultrasound guided, minimally invasive surgery strategic for the treatment of varicose veins, performed under local anaesthetic. CHIVA is an abbreviation from the French "Cure Conservatrice et Hemodynamique de l'Insufficience Veineuse en Ambulatoire".