Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The consequences to the girl with XX gonadal dysgenesis:
1. Her gonads cannot make estrogen, so her breasts will not develop and her uterus will not grow and menstruate until she is given estrogen. This is often given through the skin now.
2. Her gonads cannot make progesterone, so her menstrual periods will not be predictable until she is given a progestin, still usually as a pill.
3. Her gonads cannot produce eggs so she will not be able to conceive children naturally. A woman with a uterus but no ovaries may be able to become pregnant by implantation of another woman's fertilized egg (embryo transfer).
Due to the inability of the streak gonads to produce sex hormones (both estrogens and androgens), most of the secondary sex characteristics do not develop. This is especially true of estrogenic changes such as breast development, widening of the pelvis and hips, and menstrual periods. As the adrenal glands can make limited amounts of androgens and are not affected by this syndrome, most of these persons will develop pubic hair, though it often remains sparse.
Evaluation of delayed puberty usually reveals elevation of gonadotropins, indicating that the pituitary is providing the signal for puberty but the gonads are failing to respond. The next steps of the evaluation usually include checking a karyotype and imaging of the pelvis. The karyotype reveals XY chromosomes and the imaging demonstrates the presence of a uterus but no ovaries (the streak gonads are not usually seen by most imaging). Although an XY karyotype can also indicate a person with complete androgen insensitivity syndrome, the absence of breasts, and the presence of a uterus and pubic hair exclude the possibility. At this point it is usually possible for a physician to make a diagnosis of Swyer syndrome.
Upon diagnosis, estrogen and progesterone therapy is typically commenced, promoting the development of female characteristics.
The consequences of streak gonads to a person with Swyer syndrome:
1. Gonads cannot make estrogen, so the breasts will not develop and the uterus will not grow and menstruate until estrogen is administered. This is often given transdermally.
2. Gonads cannot make progesterone, so menstrual periods will not be predictable until progestin is administered, usually as a pill.
3. Gonads cannot produce eggs so conceiving children naturally is not possible. A woman with a uterus and ovaries but without female gamete is able to become pregnant by implantation of another woman's fertilized egg (embryo transfer).
4. Streak gonads with Y chromosome-containing cells have a high likelihood of developing cancer, especially gonadoblastoma. Streak gonads are usually removed within a year or so of diagnosis since the cancer can begin during infancy.
Identification of 45,X/46,XY karyotype has significant clinical implications due to known effects on growth, hormonal balance, gonadal development and histology. 45,X/46,XY is diagnosed by examining the chromosomes in a blood sample.
The age of diagnosis varies depending on manifestations of disease prompting reason for cytogenetic testing. Many patients are diagnosed prenatally due to fetal factors (increased nuchal fold, or abnormal levels of serum), maternal age or abnormal ultrasounds, while others will be diagnosed postnatal due to external genital malformation. It is not uncommon for patients to be diagnosed later in life due to short stature or delayed puberty, or a combination of both.
45,X/46,XY mosaicism can be detected prenatally through amniocentesis however, it was determined that the proportion of 45,X cells in the amniotic fluid cannot predict any phenotypic outcomes, often making prenatal genetic counselling difficult.
Because of the inability of the streak gonads to produce sex hormones (both estrogens and androgens), most of the secondary sex characteristics do not develop. This is especially true of estrogenic changes such as breast development, widening of the pelvis and hips, and menstrual periods. Because the adrenal glands can make limited amounts of androgens and are not affected by this syndrome, most of these girls will develop pubic hair, though it often remains sparse.
Evaluation of delayed puberty usually reveals the presence of pubic hair, but elevation of gonadotropins, indicating that the pituitary is providing the signal for puberty but the gonads are failing to respond. The next steps of the evaluation usually include checking a karyotype and imaging of the pelvis. The karyotype reveals XX chromosomes and the imaging demonstrates the presence of a uterus but no ovaries (the streak gonads are not usually seen by most imaging). At this point it is usually possible for a physician to make a diagnosis of XX gonadal dysgenesis.
During embryogenesis, without any external influences for or against, the human reproductive system is intrinsically conditioned to give rise to a female reproductive organisation.
As a result, if a gonad cannot express its sexual identity via its hormones—as in gonadal dysgenesis—then the affected person, no matter whether their chromosomes are XY or XX, will develop external female genitalia. Internal female genitalia, primarily the uterus, may or may not be present depending on the cause of the disorder.
In both sexes, the commencement and progression of puberty require functional gonads that will work in harmony with the hypothalamic and pituitary glands to produce adequate hormones.
For this reason, in gonadal dysgenesis the accompanying hormonal failure also prevents the development of secondary sex characteristics in either sex, resulting in a sexually infantile female appearance and infertility.
This condition will occur if there is an absence of both Müllerian inhibiting factor and testosterone. The absence of testosterone will result in regression of the Wolffian ducts; normal male internal reproductive tracts will not develop. The absence of Müllerian inhibiting factor will allow the Müllerian ducts to differentiate into the oviducts and uterus. In sum, this individual will possess female-like internal and external reproductive characteristics, lacking secondary sex characteristics. The genotype may be either 45,XO, 46,XX or 46,XY.
Between 5 and 10 percent of women with POF may become pregnant. Currently no fertility treatment has officially been found to effectively increase fertility in women with POF, and the use of donor eggs with in-vitro fertilization (IVF) and adoption are popular as a means of achieving parenthood for women with POF. Some women with POF choose to live child-free. (See impaired ovarian reserve for a summary of recent randomized clinical trials and treatment methods.)
Currently New York fertility researchers are investigating the use of a mild hormone called dehydroepiandrosterone (DHEA) in women with POF to increase spontaneous pregnancy rates. Published results from studies conducted on DHEA have indicated that DHEA may increase spontaneously conceived pregnancies, decrease spontaneous miscarriage rates and improve IVF success rates in women with POF.
Additionally, over the last five years a Greek research team has successfully implemented the use of dehydroepiandrosterone (DHEA) for the fertility treatment of women suffering with POF.The majority of the patients were referred for donor eggs or surrogacy, however after a few months of DHEA administration, some succeeded in getting pregnant through IVF, IUI, IUTPI or natural conception. Many babies have been born after treatment with DHEA.
Ovarian tissue cryopreservation can be performed on prepubertal girls at risk for premature ovarian failure, and this procedure is as feasible and safe as comparable operative procedures in children.
Serum follicle-stimulating hormone (FSH) measurement alone can be used to diagnose the disease. Two FSH measurements with one-month interval have been a common practice. The anterior pituitary secretes FSH and LH at high levels due to the dysfunction of the ovaries and consequent low estrogen levels. Typical FSH in POF patients is over 40 mlU/ml (post-menopausal range).
Some other blood tests are suggestive but not diagnostic. The ratio of LH (Luteinizing hormone) to FSH (Follicle-stimulating hormone), when measured in international units, is elevated in women with PCOS. Common cut-offs to designate abnormally high LH/FSH ratios are 2:1 or 3:1 as tested on Day 3 of the menstrual cycle. The pattern is not very sensitive; a ratio of 2:1 or higher was present in less than 50% of women with PCOS in one study. There are often low levels of sex hormone-binding globulin, in particular among obese or overweight women.
Anti-Müllerian hormone (AMH) is increased in PCOS, and may become part of its diagnostic criteria.
Transvaginal ultrasonography can be used to determine antral follicle count (AFC). This is an easy-to-perform and noninvasive method (but there may be some discomfort). Several studies show this test to be more accurate than basal FSH testing for older women (< 44 years of age) in predicting IVF outcome. This method of determining ovarian reserve is recommended by Dr. Sherman J. Silber, author and medical director of the Infertility Center of St. Louis.
AFC and Median Fertile Years Remaining
Note, the above table from Silber's book may be in error as it has no basis in any scientific study, and contradicts data from Broekmans, et al. 2004 study. The above table closely matches Broekmans' data only if interpreted as the total AFC of both ovaries. Only antral follicles that were 2–10 mm in size were counted in Broekmans' study.
Age and AFC and Age of Loss of Natural Fertility (See Broekmans, et al. [2004])
AFC and FSH Stimulation Recommendations for Cycles Using Assisted Reproduction Technology
Elevated serum follicle stimulating hormone (FSH) level measured on day three of the menstrual cycle. (First day of period flow is counted as day one. Spotting is not considered start of period.) If a lower value occurs from later testing, the highest value is considered the most predictive. FSH assays can differ somewhat so reference ranges as to what is normal, premenopausal or menopausal should be based on ranges provided by the laboratory doing the testing. Estradiol (E2) should also be measured as women who ovulate early may have elevated E2 levels above 80 pg/mL (due to early follicle recruitment, possibly due to a low serum inhibin B level) which will mask an elevated FSH level and give a false negative result.
High FSH strongly predicts poor IVF response in older women, less so in younger women. One study showed an elevated basal day-three FSH is correlated with diminished ovarian reserve in women aged over 35 years and is associated with poor pregnancy rates after treatment of ovulation induction(6% versus 42%).
The rates for spontaneous pregnancy in older women with elevated FSH levels have not been studied very well and the spontaneous pregnancy success rate, while low, may be underestimated due to non reporting bias, as most infertility clinics will not accept women over the age of forty with FSH levels in the premenopausal range or higher.
A woman can have a normal day-three FSH level yet still respond poorly to ovarian stimulation and hence can be considered to have poor reserve. Thus, another FSH-based test is often used to detect poor ovarian reserve: the clomid challenge test, also known as CCCT(clomiphene citrate challenge test).
Other causes of irregular or absent menstruation and hirsutism, such as hypothyroidism, congenital adrenal hyperplasia (21-hydroxylase deficiency), Cushing's syndrome, hyperprolactinemia, androgen secreting neoplasms, and other pituitary or adrenal disorders, should be investigated.
Potential methods in unexplained infertility include oral ovarian stimulation agents (such as clomifene citrate, anastrozole or letrozole) as well as intrauterine insemination (IUI), intracervical insemination (ICI) and in vitro fertilization (IVF).
In women who have not had previous treatment, ovarian stimulation combined with IUI achieves approximately the same live birth rate as IVF. On the other hand, in women who have had previous unsuccessful treatment, IVF achieves a live birth rate approximately 2-3 times greater than ovarian stimulation combined with IUI.
IUI and ICI has higher pregnancy rates when combined with ovarian stimulation in couples with unexplained infertility, for IUI being 13% unstimulated and 15% stimulated, and for ICI being 8% unstimulated and 15% stimulated. However, the rate of twin birth increases substantially with IUI or ICI combined with ovarian stimulation, for IUI being 6% unstimulated and 23% stimulated, and for ICI being 6% unstimulated and 23% stimulated.
According to NICE guidelines, oral ovarian stimulation agents should not be given to women with unexplained infertility. Rather, it is recommended that in vitro fertilization should be offered to women with unexplained infertility when they have not conceived after 2 years of regular unprotected sexual intercourse. IVF avails for embryo transfer of the appropriate number of embryos to give good chances of pregnancy with minimal risk of multiple birth.
A review of randomized studies came to the result that IVF in couples with a high chance of natural conception, as compared to IUI/ICI with or without ovarian stimulation, was "more" effective in three studies and "less" effective in two studies.
There is no evidence for an increased risk of ovarian hyperstimulation syndrome (OHSS) with IVF when compared with ovarian stimulation combined with IUI.
Hormone replacement therapy with estrogen may be used to treat symptoms of hypoestrogenism in females with the condition. There are currently no known treatments for the infertility caused by the condition in either sex.
There are no documented cases in which both types of gonadal tissue function.
Although fertility is possible in true hermaphrodites, there has yet to be a documented case where both gonadal tissues function, contrary to the misconception that hermaphrodites can impregnate themselves. As of 2010, there have been at least 11 reported cases of fertility in true hermaphrodite humans in the scientific literature, with one case of a person with XY-predominant (96%) mosaic giving birth.
Diagnosis is made by imaging/sonography and thyroid hormone tests.
Prognosis in unexplained infertility depends on many factors, but can roughly be estimated by e.g. the
Hunault model, which takes into account female age, duration of infertility/subfertility, infertility/subfertility being primary or secondary, percentage of motile sperm and being referred by a general practitioner or gynecologist.
The syndrome usually responds well to thyroid hormone replacement with complete resolution of symptoms.
Encountered karyotypes include 47XXY, 46XX/46XY, or 46XX/47XXY or XX & XY with SRY Mutations, Mixed Chromosomal abnormalities or hormone deficiency/excess disorders, and various degrees of mosaicism of these and a variety of others. The 3 Primary Karyotypes for True Hermaphroditism are XX with genetic defects (55-70% of cases), XX/XY (20-30% of cases) & XY (5-15% of cases) with the remainder being a variety of other Chromosomal abnormalities and Mosaicisms.
The diagnosis of cervical agenesis can be made by magnetic resonance imaging, which is used to determine the presence or absence of a cervix. Although MRI can detect the absence of a cervix (agenesis), it is unable to show cervical dysgenesis (where the cervix is present, but malformed). Ultrasound is a less reliable imaging study, but it is often the first choice by gynecologists to establish a diagnosis and can identify a hematometra secondary to cervical agenesis.
Nuclear receptor subfamily 5 group A member 1 (NR5A1), also known as SF1 or Ad4BP (MIM 184757), is located on the long arm of chromosome 9 (9q33.3). The NR5A1 is an orphan nuclear receptor that was first identified following the search for a common regulator of the cytochrome P450 steroid hydroxylase enzyme family. This receptor is a pivotal transcriptional regulator of an array of genes involved in reproduction, steroidogenesis and male sexual differentiation and also plays a crucial role in adrenal gland formation in both sexes. NR5A1 regulates the mullerian inhibitory substance by binding to a conserved upstream regulatory element and directly participates in the process of mammalian sex determination through mullerian duct regression. Targeted disruption of NR5A1 (Ftzf1) in mice results in gonadal and adrenal agenesis, persistence of Mullerian structures and abnormalities of the hypothalamus and pituitary gonadotropes. Heterozygous animals demonstrate a milder phenotype including an impaired adrenal stress response and reduced testicular size. In humans, NR5A1 mutations were first described in patients with 46, XY karyotype and disorders of sex development (DSD), Mullerian structures and primary adrenal failure (MIM 612965). After that, heterozygous NR5A1 mutations were described in seven patients showing 46, XY karyotype and ambiguous genitalia, gonadal dysgenesis, but no adrenal insufficiency. Since then, studies have confirmed that mutations in NR5A1 in patients with 46, XY karyotype cause severe underandrogenisation, but no adrenal insufficiency, establishing dynamic and dosage-dependent actions for NR5A1. Subsequent studies revealed that NR5A1 heterozygous mutations cause primary ovarian insufficiency (MIM 612964).
Follicle-stimulating hormone (FSH) insensitivity, or ovarian insensitivity to FSH in females, also referable to as ovarian follicle hypoplasia or granulosa cell hypoplasia in females, is a rare autosomal recessive genetic and endocrine syndrome affecting both females and males, with the former presenting with much greater severity of symptomatology. It is characterized by a resistance or complete insensitivity to the effects of follicle-stimulating hormone (FSH), a gonadotropin which is normally responsible for the stimulation of estrogen production by the ovaries in females and maintenance of fertility in both sexes. The condition manifests itself as hypergonadotropic hypogonadism (decreased or lack of production of sex steroids by the gonads despite high circulating levels of gonadotropins), reduced or absent puberty (lack of development of secondary sexual characteristics, resulting in sexual infantilism if left untreated), amenorrhea (lack of menstruation), and infertility in females, whereas males present merely with varying degrees of infertility and associated symptoms (e.g., decreased sperm production).
A related condition is luteinizing hormone (LH) insensitivity (termed Leydig cell hypoplasia when it occurs in males), which presents with similar symptoms to those of FSH insensitivity but with the symptoms in the respective sexes reversed (i.e., hypogonadism and sexual infantilism in males and merely problems with fertility in females); however, males also present with feminized or ambiguous genitalia (also known as pseudohermaphroditism), whereas ambiguous genitalia does not occur in females with FSH insensitivity. Despite their similar causes, LH insensitivity is considerably more common in comparison to FSH insensitivity.
Recently, NR5A1 mutations have been related to human male infertility (MIM 613957). These findings substantially increase the number of NR5A1 mutations reported in humans and show that mutations in NR5A1 can be found in patients with a wide range of phenotypic features, ranging from 46,XY sex reversal with primary adrenal failure to male infertility. For the first time, Bashamboo et al. (2010) conducted a study on the nonobstructive infertile men (a non-Caucasian mixed ancestry n = 315), which resulted in the report of all missense mutations in the NR5A1 gene with 4% frequency. Functional studies of the missense mutations revealed impaired transcriptional activation of NR5A1-responsive target genes. Subsequently, three missense mutations were identified as associated with and most likely the cause of the male infertility, according to computational analyses. The study indicated that the mutation frequency is below 1% (Caucasian German origin, n = 488). In another study the coding sequence of NR5A1 has been analysed in a cohort of 90 well-characterised idiopathic Iranian azoospermic infertile men versus 112 fertile men. Heterozygous NR5A1 mutations were found in 2 of 90 (2.2%) of cases. These two patients harboured missense mutations within the hinge region (p.P97T) and ligand-binding domain (p.E237K) of the NR5A1 protein.
Standard treatment would include surgical exploration via laparotomy. Laparoscopy may be an option if the surgeon is particularly skilled in removing ovarian neoplasms via laparoscopy intact. If the diagnosis of gonadoblastoma is certain, a bilateral salpingo-oophorectomy (BSO) should be performed to remove both the primary tumor and the dysgenic contralateral ovary. If uninvolved, the uterus should be left intact. Modern reproductive endocrinology technology allows patients post BSO to achieve pregnancy via in-vitro fertilization (IVF) with a donor egg.