Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The first clinical manifestation of Paget's disease is usually an elevated alkaline phosphatase in the blood.
Paget's disease may be diagnosed using one or more of the following tests:
- Pagetic bone has a characteristic appearance on X-rays. A skeletal survey is therefore indicated.
- An elevated level of alkaline phosphatase in the blood in combination with normal calcium, phosphate, and aminotransferase levels in an elderly patient are suggestive of Paget's disease.
- Markers of bone turnover in urine "eg". Pyridinoline
- Elevated levels of serum and urinary hydroxyproline are also found.
- Bone scans are useful in determining the extent and activity of the condition. If a bone scan suggests Paget's disease, the affected bone(s) should be X-rayed to confirm the diagnosis.
Although initially diagnosed by a primary care physician, endocrinologists (internal medicine physicians who specialize in hormonal and metabolic disorders), rheumatologists (internal medicine physicians who specialize in joint and muscle disorders), orthopedic surgeons, neurosurgeons, neurologists, oral and maxillofacial surgeons, podiatrists, and otolaryngologists are generally knowledgeable about treating Paget's disease, and may be called upon to evaluate specialized symptoms. It can sometimes difficult to predict whether a person with Paget's disease, who otherwise has no signs or symptoms of the disorder, will develop symptoms or complications (such as a bone fracture) in the future.
Distal clavicular osteolysis (DCO) is often associated with problems weightlifters have with their acromioclavicular joints due to high stresses put on the clavicle as it meets with the acromion. This condition is often referred to as "weight lifter's shoulder". Medical ultrasonography readily depicts resorption of the distal clavicle as irregular cortical erosions, whereas the acromion remains intact. Associated findings may include distended joint capsule, soft-tissue swelling, and joint instability.
A common surgery to treat recalcitrant DCO is re-sectioning of the distal clavicle, removing a few millimetres of bone from the very end of the bone.
While bone resorption is commonly associated with many diseases or joint problems, the term "osteolysis" generally refers to a problem common to artificial joint replacements such as total hip replacements, total knee replacements and total shoulder replacements. Osteolysis can also be associated with the radiographic changes seen in those with bisphosphonate-related osteonecrosis of the jaw.
There are several biological mechanisms which may lead to osteolysis. In total hip replacement, the generally accepted explanation for osteolysis involves wear particles (worn off the contact surface of the artificial ball and socket joint). As the body attempts to clean up these wear particles (typically consisting of plastic or metal), it triggers an autoimmune reaction which causes resorption of living bone tissue. Osteolysis has been reported to occur as early as 12 months after implantation and is usually progressive. This may require a revision surgery (replacement of the prosthesis).
Although osteolysis itself is clinically asymptomatic, it can lead to implant loosening or bone breakage, which in turn causes serious medical problems.
In 1983 Heffez and colleagues published a case report in which they suggested eight criteria for a definitive diagnosis of Gorham's disease:
- Positive biopsy with the presence of angiomatous tissue
- Absence of cellular atypia
- Minimal or no osteoblastic response or dystrophic calcifications
- Evidence of local bone progressive osseous resorption
- Non-expansile, non-ulcerative lesions
- No involvement of viscera
- Osteolytic radiographic pattern
- Negative hereditary, metabolic, neoplastic, immunologic, or infectious etiology.
In the early stages of the disease x-rays reveal changes resembling patchy osteoporosis. As the disease progresses bone deformity occurs with further loss of bone mass and, in the tubular bones (the long bones of the arms and legs), a concentric shrinkage is often seen which has been described as having a "sucked candy" appearance. Once the cortex (the outer shell) of the bone has been disrupted, vascular channels may invade adjacent soft tissues and joints. Eventually, complete or near-complete resorption of the bone occurs and may extend to adjacent bones, though spontaneous arrest of bone loss has been reported on occasion. Throughout this process, as the bone is destroyed it is replaced by angiomatous and/or fibrous tissue.
Often Gorham's disease is not recognized until a fracture occurs, with subsequent improper bone healing. The diagnosis essentially is one of exclusion and must be based on combined clinical, radiological, and histopathological findings. X-rays, CT scans, MRIs, ultrasounds, and nuclear medicine (bone scans) are all important tools in the diagnostic workup and surgical planning, but none have the ability alone to produce a definitive diagnosis. Surgical biopsy with histological identification of the vascular or lymphatic proliferation within a generous section of the affected bone is an essential component in the diagnostic process.
Recognition of the disease requires a high index of suspicion and an extensive workup. Because of its serious morbidity, Gorham's must always be considered in the differential diagnosis of osteolytic lesions.
Outcomes vary depending on the location of the disease, the degree of damage to the joint, and whether surgical repair was necessary. Average healing times vary from 55–97 days depending on location. Up to 1–2 years may be required for complete healing.
The bone edema in arthitis mutilans can be treated with TNF inhibitors in the short term: a 2007 study found that the bone edema associated with psoriatic arthritis (of which arthitis mutilans is a subtype) responded to TNF inhibitors with "dramatic" improvement, but the study was not determinative of whether TNF inhibitors would prevent new bone formation, bone fusion, or osteolysis (bone resorption).
Treatment of Gorham's disease is for the most part palliative and limited to symptom management.
Sometimes the bone destruction spontaneously ceases and no treatment is required. But when the disease is progressive, aggressive intervention may be necessary. Duffy and colleagues reported that around 17% of patients with Gorham's disease in the ribs, shoulder, or upper spine experience extension of the disease into the chest, leading to chylothorax with its serious consequences, and that the mortality rate in this group can reach as high as 64% without surgical intervention.
A search of the medical literature reveals multiple case reports of interventions with varying rates of success as follows:
Cardiothoracic (heart & lung):
- Pleurodesis
- Ligation of thoracic duct
- Pleurperitoneal shunt
- Radiation therapy
- Pleurectomy
- Surgical resection
- Thalidomide
- Interferon alpha-2b
- TPN (total parenteral nutrition)
- Thoracentesis
- Diet rich in medium-chain triglycerides and protein
- Chemotherapy
- Sclerotherapy
- Transplantation
Skeletal:
- Interferon alpha-2b
- Bisphosphonate (e.g. pamidronate)
- Surgical resection
- Radiation therapy
- Sclerotherapy
- Percutaneous bone cement
- Bone graft
- Prosthesis
- Surgical stabilization
- Amputation
To date, there are no known interventions that are consistently effective for Gorham's and all reported interventions are considered experimental treatments, though many are routine for other conditions. Some patients may require a combination of these approaches. Unfortunately, some patients will not respond to any intervention.
Acroosteolysis is resorption of the distal bony phalanges. Acroosteolysis has two patterns of resorption in adults: diffuse and bandlike.
The diffuse pattern of resorption has a widely diverse differential diagnosis which includes: pyknodysostosis, collagen vascular disease and vasculitis, Raynaud's neuropathy, trauma, epidermolysis bullosa, psoriasis, frostbite, sarcoidosis, hypertrophic osteoarthropathy, acromegaly, and advanced leprosy.
The bandlike pattern of resorption may be seen with polyvinyl chloride exposure and Hadju-Cheney syndrome.
A mnemonic commonly used for acro-osteolysis is PINCHFO.
Pyknodysostosis, Psoriasis,
Injury (thermal burn, frostbite),
Neuropathy (diabetes),
Collagen vascular disease (scleroderma, Raynaud's),
Hyperparathyroidism,
Familial (Hadju-Cheney, progeria),
Occupational (polyvinyl exposure),
Acroosteolysis may be associated with minimal skin changes or with ischemic skin lesions that may result in digital necrosis.
Although a 2011 research article stated that disagreements between hand surgeons and rheumatologists remain regarding the indications, timing and effectiveness of rheumatoid hand surgery, arthritis mutilans may be successfully treated by iliac-bone graft and arthrodesis of the interphalangeal joints and the metacarpophalangeal joint in each finger.
Once the process is recognized, it should be treated via the VIPs — vascular management, infection management and prevention, and pressure relief. Aggressively pursuing these three strategies will progress the healing trajectory of the wound. Pressure relief (off-loading) and immobilization with total contact casting (TCC) are critical to helping ward off further joint destruction.
TCC involves encasing the patient’s complete foot, including toes, and the lower leg in a specialist cast that redistributes weight and pressure in the lower leg and foot during everyday movements. This redistributes pressure from the foot into the leg, which is more able to bear weight, to protect the wound, letting it regenerate tissue and heal. TCC also keeps the ankle from rotating during walking, which prevents shearing and twisting forces that can further damage the wound. TCC aids maintenance of quality of life by helping patients to remain mobile.
There are two scenarios in which the use of TCC is appropriate for managing neuropathic arthropathy (Charcot foot), according to the American Orthopaedic Foot and Ankle Society. First, during the initial treatment, when the breakdown is occurring, and the foot is exhibiting edema and erythema; the patient should not bear weight on the foot, and TCC can be used to control and support the foot. Second, when the foot has become deformed and ulceration has occurred; TCC can be used to stabilize and support the foot, and to help move the wound toward healing.
Walking braces controlled by pneumatics are also used. Surgical correction of a joint is rarely successful in the long-term in these patients. However, off-loading alone does not translate to optimal outcomes without appropriate management of vascular disease and/or infection. Duration and aggressiveness of offloading (non-weight-bearing vs. weight-bearing, non-removable vs. removable device) should be guided by clinical assessment of healing of neuropathic arthropathy based on edema, erythema, and skin temperature changes. It can take 6–9 months for the edema and erythema of the affected joint to recede.
Laminitic horses are generally sore to pressure from hoof testers applied over the toe area. However, there is risk of a false negative if the horse naturally has a thick sole, or if the hoof capsule is about to slough.
The severity of lameness is qualified using the Obel grading system:
Horses suffering from the disease usually require an abaxial sesamoid block to relieve them of pain, since the majority of pain comes from the hoof wall. However, chronic cases may respond to a palmar digital block since they usually have primarily sole pain. Severe cases may not respond fully to nerve blocks.
Early diagnosis is essential to effective treatment. However, early outward signs may be fairly nonspecific. Careful physical examination typically is diagnostic, but radiographs are also very useful.
Metallosis is the putative medical condition involving deposition and build-up of metal debris in the soft tissues of the body.
Metallosis has been hypothesized to occur when metallic components in medical implants, specifically joint replacements, abrade against one another.
Metallosis has also been observed in some patients either sensitive to the implant or for unknown reasons even in the absence of malpositioned prosthesis. Though rare, metallosis has been observed at an estimated incidence of 5% of metal joint implant patients over the last 40 years. Women may be at slightly higher risk than men. If metallosis occurs, it may involve the hip and knee joints, the shoulder, wrist, or elbow joints.
The abrasion of metal components may cause metal ions to be solubilized. The hypothesis that the immune system identifies the metal ions as foreign bodies and inflames the area around the debris may be incorrect because of the small size of metal ions may prevent them from becoming haptens. Poisoning from metallosis is rare, but cobaltism is an established health concern. The involvement of the immune system in this putative condition has also been theorized but has never been proven.
Purported symptoms of metallosis generally include pain around the site of the implant, pseudotumors (a mass of inflamed cells that resembles a tumor but is actually collected fluids), and a noticeable rash that indicates necrosis. The damaged and inflamed tissue can also contribute to loosening the implant or medical device. Metallosis can cause dislocation of non-cemented implants as the healthy tissue that would normally hold the implant in place is weakened or destroyed. Metallosis has been demonstrated to cause osteolysis.
Women, those who are small in stature, and the obese are at greater risk for metallosis because their body structure causes more tension on the implant, quickening the abrasion of the metal components and the subsequent build-up of metallic debris.
Family physicians and orthopedists rarely see a malignant bone tumor (most bone tumors are benign). The route to osteosarcoma diagnosis usually begins with an X-ray, continues with a combination of scans (CT scan, PET scan, bone scan, MRI) and ends with a surgical biopsy. A characteristic often seen in an X-ray is Codman's triangle, which is basically a subperiosteal lesion formed when the periosteum is raised due to the tumor. Films are suggestive, but bone biopsy is the only definitive method to determine whether a tumor is malignant or benign.
Most times, the early signs of osteosarcoma are caught on X-rays taken during routine dental check-ups. Osteosarcoma frequently develops in the mandible (lower jaw); accordingly, Dentist are trained to look for signs that may suggest osteosarcoma. Even though radiographic findings for this cancer vary greatly, one usually sees a symmetrical widening of the periodontal ligament space. If the dentist has reason to suspects osteosarcoma or another underlying disorder, he or she would refer the patient to an Oral & Maxillofacial surgeon for biopsy. A biopsy of suspected osteosarcoma outside of the facial region should be performed by a qualified orthopedic oncologist. The American Cancer Society states: "Probably in no other cancer is it as important to perform this procedure properly. An improperly performed biopsy may make it difficult to save the affected limb from amputation." It may also metastasise to the lungs, mainly appearing on the chest X-ray as solitary or multiple round nodules most common at the lower regions.
In August 2010, DePuy recalled its hip replacement systems ASR XL Acetabular Hip Replacement System and ASR Hip Resurfacing System due to failure rates and side effects including metallosis. The recalls triggered a large number of lawsuits against DePuy and its parent company Johnson & Johnson upon claims that the companies knew about the dangers of the implants before they went on the market in the United States.
Any tooth that is identified, in either the history of pain or base clinical exam, as a source for toothache may undergo further testing for vitality of the dental pulp, infection, fractures, or periodontitis. These tests may include:
- Pulp sensitivity tests, usually carried out with a cotton wool sprayed with ethyl chloride to serve as a cold stimulus, or with an electric pulp tester. The air spray from a three-in-one syringe may also be used to demonstrate areas of dentin hypersensitivity. Heat tests can also be applied with hot Gutta-percha. A healthy tooth will feel the cold but the pain will be mild and disappear once the stimulus is removed. The accuracy of these tests has been reported as 86% for cold testing, 81% for electric pulp testing, and 71% for heat testing. Because of the lack of test sensitivity, a second symptom should be present or a positive test before making a diagnosis.
- Radiographs utilized to find dental caries and bone loss laterally or at the apex.
- Assessment of biting on individual teeth (which sometimes helps to localize the problem) or the separate cusps (may help to detect cracked cusp syndrome).
Less commonly used tests might include trans-illumination (to detect congestion of the maxillary sinus or to highlight a crack in a tooth), dyes (to help visualize a crack), a test cavity, selective anaesthesia and laser doppler flowmetry.
The clinical examination narrows the source down to a specific tooth, teeth, or a non-dental cause. Clinical examination moves from the outside to the inside, and from the general to the specific. Outside of the mouth, the sinuses, muscles of the face and neck, the temporomandibular joints, and cervical lymph nodes are palpated for pain or swelling. In the mouth, the soft tissues of the gingiva, mucosa, tongue, and pharynx are examined for redness, swelling or deformity. Finally, the teeth are examined. Each tooth that may be painful is percussed (tapped), palpated at the base of the root, and probed with a dental explorer for dental caries and a periodontal probe for periodontitis, then wiggled for mobility.
Sometimes the symptoms reported in the history are misleading and point the examiner to the wrong area of the mouth. For instance, sometimes people may mistake pain from pulpitis in a lower tooth as pain in the upper teeth, and "vice versa". In other instances, the apparent examination findings may be misleading and lead to the wrong diagnosis and wrong treatment. Pus from a pericoronal abscess associated with a lower third molar may drain along the submucosal plane and discharge as a parulis over the roots of the teeth towards the front of the mouth (a "migratory abscess"). Another example is decay of the tooth root which is hidden from view below the gumline, giving the casual appearance of a sound tooth if careful periodontal examination is not carried out.
Factors indicating infection include movement of fluid in the tissues during palpation ("fluctuance"), swollen lymph nodes in the neck, and fever with an oral temperature more than 37.7 °C.
Diagnosis of tendinitis and bursitis begins with a medical history and physical examination. X rays do not show tendons or the bursae but may be helpful in ruling out bony abnormalities or arthritis. The doctor may remove and test fluid from the inflamed area to rule out infection.
Ultrasound scans are frequently used to confirm a suspected tendinitis or bursitis as well as rule out a tear in the rotator cuff muscles.
Impingement syndrome may be confirmed when injection of a small amount of anesthetic (lidocaine hydrochloride) into the space under the acromion relieves pain.
Soft tissue constriction on the medial aspect of the fifth toe is the most frequently presented radiological sign in the early stages. Distal swelling of the toe is considered to be a feature of the disease. In grade III lesions osteolysis is seen in the region of the proximal interphalangeal joint with a characteristic tapering effect. Dispersal of the head of the proximal phalanx is frequently seen. Finally, after autoamputation, the base of the proximal phalanx remains. Radiological examination allows early diagnosis and staging of ainhum. Early diagnosis is crucial to prevent amputation.
Doppler shows decreased blood flow in posterior tibial artery.
On X-ray, giant-cell tumors (GCTs) are lytic/lucent lesions that have an epiphyseal location and grow to the articular surface of the involved bone. Radiologically the tumors may show characteristic 'soap bubble' appearance. They are distinguishable from other bony tumors in that GCTs usually have a nonsclerotic and sharply defined border. About 5% of giant-cell tumors metastasize, usually to a lung, which may be benign metastasis, when the diagnosis of giant-cell tumor is suspected, a chest X-ray or computed tomography may be needed. MRI can be used to assess intramedullary and soft tissue extension.
The best diagnosis for a SLAP tear is a clinical exam
followed by an MRI combined with a contrast agent
Amputation is the initial treatment, although this alone will not prevent metastasis. Chemotherapy combined with amputation improves the survival time, but most dogs still die within a year. Surgical techniques designed to save the leg (limb-sparing procedures) do not improve the prognosis.
Some current studies indicate osteoclast inhibitors such as alendronate and pamidronate may have beneficial effects on the quality of life by reducing osteolysis, thus reducing the degree of pain, as well as the risk of pathological fractures.
Ainhum is an acquired and progressive condition, and thus differs from congenital annular constrictions. Ainhum has been much confused with similar constrictions caused by other diseases such as leprosy, diabetic gangrene, syringomyelia, scleroderma or Vohwinkel syndrome. In this case, it is called pseudo-ainhum, treatable with minor surgery or intralesional corticosteroids, as with ainhum. It has even been seen in psoriasis or it is acquired by the wrapping toes, penis or nipple with hairs, threads or fibers. Oral retinoids, such as tretinoin, and antifibrotic agents like tranilast have been tested for pseudo-ainhum. Impending amputation in Vohwinkel syndrome can sometimes be aborted by therapy with oral etretinate. It is rarely seen in the United States but often discussed in the international medical literature.
The diagnosis of giant-cell tumors is based on biopsy findings. The key histomorphologic feature is, as the name of the entity suggests, (multinucleated) giant cells with up to a hundred nuclei that have prominent nucleoli. Surrounding mononuclear and small multinucleated cells have nuclei similar to those in the giant cells; this distinguishes the lesion from other osteogenic lesions which commonly have (benign) osteoclast-type giant cells. Soap-bubble appearance is a characteristic feature.