Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A diagnosis of peritonitis is based primarily on the clinical manifestations described above. Rigidity (involuntary contraction of the abdominal muscles) is the most specific exam finding for diagnosing peritonitis (+ likelihood ratio: 3.9). If peritonitis is strongly suspected, then surgery is performed without further delay for other investigations. Leukocytosis, hypokalemia, hypernatremia, and acidosis may be present, but they are not specific findings. Abdominal X-rays may reveal dilated, edematous intestines, although such X-rays are mainly useful to look for pneumoperitoneum, an indicator of gastrointestinal perforation. The role of whole-abdomen ultrasound examination is under study and is likely to expand in the future. Computed tomography (CT or CAT scanning) may be useful in differentiating causes of abdominal pain. If reasonable doubt still persists, an exploratory peritoneal lavage or laparoscopy may be performed. In patients with ascites, a diagnosis of peritonitis is made via paracentesis (abdominal tap): More than 250 polymorphonucleate cells per μL is considered diagnostic. In addition, Gram stain is almost always negative, whereas culture of the peritoneal fluid can determine the microorganism responsible and determine their sensitivity to antimicrobial agents.
On x-rays, gas may be visible in the abdominal cavity. Gas is easily visualized on x-ray while the patient is in an upright position. The perforation can often be visualised using computed tomography. White blood cells are often elevated.
In normal conditions, the peritoneum appears greyish and glistening; it becomes dull 2–4 hours after the onset of peritonitis, initially with scarce serous or slightly turbid fluid. Later on, the exudate becomes creamy and evidently suppurative; in dehydrated patients, it also becomes very inspissated. The quantity of accumulated exudate varies widely. It may be spread to the whole peritoneum, or be walled off by the omentum and viscera. Inflammation features infiltration by neutrophils with fibrino-purulent exudation.
People with the above symptoms are commonly studied with computed tomography, or CT scan. The CT scan is very accurate (98%) in diagnosing diverticulitis. In order to extract the most information possible about the patient's condition, thin section (5 mm) transverse images are obtained through the entire abdomen and pelvis after the patient has been administered oral and intravascular contrast. Images reveal localized colon wall thickening, with inflammation extending into the fat surrounding the colon. The diagnosis of acute diverticulitis is made confidently when the involved segment contains diverticula. CT may also identify patients with more complicated diverticulitis, such as those with an associated abscess. It may even allow for radiologically guided drainage of an associated abscess, sparing a patient from immediate surgical intervention.
Other studies, such as barium enema and colonoscopy, are contraindicated in the acute phase of diverticulitis because of the risk of perforation.
The severity of diverticulitis can be radiographically graded by the Hinchey Classification.
Surgical intervention is nearly always required in form of exploratory laparotomy and closure of perforation with peritoneal wash. Occasionally they may be managed laparoscopically.
Conservative treatment including intravenous fluids, antibiotics, nasogastric aspiration and bowel rest is indicated only if the person is nontoxic and clinically stable.
The differential diagnosis includes colon cancer, inflammatory bowel disease, ischemic colitis, and irritable bowel syndrome, as well as a number of urological and gynecological processes.
There may be signs of septic shock. A physical examination reveals abdominal tenderness and possible loss of bowel sounds. An abdominal radiography shows colonic dilation. White blood cell count is usually elevated. Severe sepsis may present with hypothermia or leukopenia.
An intussusception is often suspected based on history and physical exam, including observation of Dance's sign. A digital rectal examination is particularly helpful in children, as part of the intussusceptum may be felt by the finger. A definite diagnosis often requires confirmation by diagnostic imaging modalities. Ultrasound is the imaging modality of choice for diagnosis and exclusion of intussusception, due to its high accuracy and lack of radiation. The appearance of target sign (also called "doughnut sign" on a sonograph, usually around 3 cm in diameter, confirms the diagnosis. The image seen on transverse sonography or computed tomography is that of a doughnut shape, created by the hyperechoic central core of bowel and mesentery surrounded by the hypoechoic outer edematous bowel. In longitudinal imaging, intussusception resembles a sandwich.
An x-ray of the abdomen may be indicated to check for intestinal obstruction or free intraperitoneal gas. The latter finding implies that bowel perforation has already occurred. Some institutions use air enema for diagnosis, as the same procedure can be used for treatment.
The diagnosis of Boerhaave's syndrome is suggested on the plain chest radiography and confirmed by chest CT scan. The initial plain chest radiograph is almost always abnormal in patients with Boerhaave's syndrome and usually reveals mediastinal or free peritoneal air as the initial radiologic manifestation. With cervical esophageal perforations, plain films of the neck show air in the soft tissues of the prevertebral space.
Hours to days later, pleural effusion(s) with or without pneumothorax, widened mediastinum, and subcutaneous emphysema are typically seen. CT scan may show esophageal wall edema and thickening, extraesophageal air, periesophageal fluid with or without gas bubbles, mediastinal widening, and air and fluid in the pleural spaces, retroperitoneum or lesser sac.
The diagnosis of esophageal perforation could also be confirmed by water-soluble contrast esophagram (Gastrografin), which reveals the location and extent of extravasation of contrast material. Although barium is superior in demonstrating small perforations, the spillage of barium sulfate into the mediastinal and pleural cavities can cause an inflammatory response and subsequent fibrosis and is therefore not used as the primary diagnostic study. If, however, the water-soluble study is negative, a barium study should be performed for better definition.
Endoscopy has no role in the diagnosis of spontaneous esophageal perforation. Both the endoscope and insufflation of air can extend the perforation and introduce air into the mediastinum.
Patients may also have a pleural effusion high in amylase (from saliva), low pH, and may contain particles of food.
Fetal and neonatal bowel obstructions are often caused by an intestinal atresia, where there is a narrowing or absence of a part of the intestine. These atresias are often discovered before birth via an ultrasound, and treated with using laparotomy after birth. If the area affected is small, then the surgeon may be able to remove the damaged portion and join the intestine back together. In instances where the narrowing is longer, or the area is damaged and cannot be used for a period of time, a temporary stoma may be placed.
An intussusception has two main differential diagnoses: acute gastroenteritis and rectal prolapse. Abdominal pain, vomiting, and stool with mucus and blood are present in acute gastroenteritis, but diarrhea is the leading symptom. Rectal prolapse can be differentiated by projecting mucosa that can be felt in continuity with the perianal skin, whereas in intussusception the finger may pass indefinitely into the depth of the sulcus.
The main diagnostic tools are blood tests, X-rays of the abdomen, CT scanning, and/or ultrasound. If a mass is identified, biopsy may determine the nature of the mass.
Radiological signs of bowel obstruction include bowel distension and the presence of multiple (more than six) gas-fluid levels on supine and erect abdominal radiographs.
Contrast enema or small bowel series or CT scan can be used to define the level of obstruction, whether the obstruction is partial or complete, and to help define the cause of the obstruction.
According to a meta-analysis of prospective studies by the Cochrane Collaboration, the appearance of water-soluble contrast in the cecum on an abdominal radiograph within 24 hours of oral administration predicts resolution of an adhesive small bowel obstruction with a pooled sensitivity of 97% and specificity of 96%.
Colonoscopy, small bowel investigation with ingested camera or push endoscopy, and laparoscopy are other diagnostic options.
Treatment for sigmoid volvulus may include sigmoidoscopy. If the mucosa of the sigmoid looks normal and pink, place a rectal tube for decompression, correct any fluid, electrolyte, cardiac, renal or pulmonary abnormalities and then take the person to the operating room for repair. If surgery is not performed, there is a high rate of recurrence.
For people with signs of sepsis or an abdominal catastrophe, immediate surgery and resection is advised.
In a cecal volvulus, the cecum may be returned to a normal position and sutured in place, a procedure known as cecopexy. If identified early, before presumed intestinal wall ischemia has resulted in tissue breakdown and necrosis, the cecal volvulus can be detorsed laparoscopically.
With the exception of a few case reports describing survival without surgery, the mortality of untreated Boerhaave syndrome is nearly 100%. Its treatment includes immediate antibiotic therapy to prevent mediastinitis and sepsis, surgical repair of the perforation, and if there is significant fluid loss it should be replaced with IV fluid therapy since oral rehydration is not possible. Even with early surgical intervention (within 24 hours) the risk of death is 25%.
If the condition does not improve, the risk of death is significant. In case of poor response to conservative therapy, a colectomy is usually required.
Right upper quadrant abdominal ultrasound is most commonly used to diagnose cholecystitis. Ultrasound findings suggestive of acute cholecystitis include gallstones, fluid surrounding the gallbladder, gallbladder wall thickening (wall thickness over 3 mm), dilation of the bile duct, and sonographic Murphy's sign. Given its higher sensitivity, hepatic iminodiacetic acid (HIDA) scan can be used if ultrasound is not diagnostic. CT scan may also be used if complications such as perforation or gangrene are suspected.
Organ perforation is a complete penetration of the wall of a hollow organ in the body, such as the gastrointestinal tract in the case of gastrointestinal perforation. It mainly refers to accidental or pathologic perforation, rather than intentional penetration during surgery.
Types include gastrointestinal perforation and uterine perforation.
In someone suspected of having cholecystitis, blood tests are performed for markers of inflammation (e.g. complete blood count, C-reactive protein), as well as bilirubin levels in order to assess for bile duct blockage. Complete blood count typically shows an increased white blood count (12,000–15,000/mcL). C-reactive protein is usually elevated although not commonly measured in the United States. Bilirubin levels are often mildly elevated (1–4 mg/dL). If bilirubin levels are more significantly elevated, alternate or additional diagnoses should be considered such as gallstone blocking the common bile duct (common bile duct stone). Less commonly, blood aminotransferases are elevated. The degree of elevation of these laboratory values may depend on the degree of inflammation of the gallbladder.
Typhlitis is a medical emergency and requires prompt management. Untreated typhlitis has a poor prognosis, particularly if associated with pneumatosis intestinalis (air in the bowel wall) and/or bowel perforation, and has significant morbidity unless promptly recognized and aggressively treated.
Successful treatment hinges on:
1. Early diagnosis provided by a high index of suspicion and the use of CT scanning
2. Nonoperative treatment for uncomplicated cases
3. Empiric antibiotics, particularly if the patient is neutropenic or at other risk of infection.
In rare cases of prolonged neutropenia and complications such as bowel perforation, neutrophil transfusions can be considered but have not been studied in a randomized control trial. Elective right hemicolectomy may be used to prevent recurrence but is generally not recommended
"...The authors have found nonoperative treatment highly effective in patients who do not manifest signs of peritonitis, perforation, gastrointestinal hemorrhage, or clinical deterioration. Recurrent typhlitis was frequent after conservative therapy (recurrence rate, 67 percent), however," as based on studies from the 1980s
It is important to note that both barium enema and colonoscopy are contraindicated during acute episodes of diverticulitis, as the barium may leak out into the abdominal cavity, and colonoscopy can cause perforations of the bowel wall.
Diagnosis is guided by the person's presenting symptoms and laboratory findings. The gold standard imaging modality for the presence of gallstones is ultrasound of the right upper quadrant. There are many reasons for this choice, including no exposure to radiation, low cost, and availability in city, urban, and rural hospitals. Gallstones are detected with a specificity and sensitivity of greater than 95% with ultrasound. Further signs on ultrasound may suggest cholecystitis or choledocholithiasis. Computed Topography (CT) is not indicated when investigating for gallbladder disease as 60% of stones are "not" radiopaque. CT should only be utilized if other intraabdominal pathology exists or the diagnosis is uncertain. Endoscopic retrograde cholangiopancreatography (ERCP) should be used only if lab tests suggest the existence of a gallstone in the bile duct. ERCP is then both diagnostic and therapeutic.
Distal or sigmoid, fecalomas can often be disimpacted digitally or by a catheter which carries a flow of disimpaction fluid (water or other solvent or lubricant). Surgical intervention in the form of sigmoid colectomy or proctocolectomy and ileostomy may be required only when all conservative measures of evacuation fail.
Treatment is surgical, potentially with a laparoscopic resection. In patients with bleeding, strangulation of bowel, bowel perforation or bowel obstruction, treatment involves surgical resection of both the Meckel's diverticulum itself along with the adjacent bowel segment, and this procedure is called a "small bowel resection". In patients without any of the aforementioned complications, treatment involves surgical resection of the Meckel's diverticulum only, and this procedure is called a simple diverticulectomy.
With regards to asymptomatic Meckel's diverticulum, some recommend that a search for Meckel's diverticulum should be conducted in every case of appendectomy/laparotomy done for acute abdomen, and if found, Meckel's diverticulectomy or resection should be performed to avoid secondary complications arising from it.
Typhlitis is diagnosed with a radiograph CT scan showing thickening of the cecum and "fat stranding".