Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
The first step to diagnosing tonsil carcinoma is to obtain an accurate history from the patient. The physician will also examine the patient for any indicative physical signs. A few tests then, maybe conducted depending on the progress of the disease or if the doctor feels the need for. The tests include:
Fine needle aspiration, blood tests, MRI, x-rays and PET scan.
The basis of deciding the T stage depends on physical examination and imaging of the tumor.
Diagnosis is confirmed via biopsy of the tissue(s) suspected to be affected by SCC. For the skin, look under skin biopsy.
The pathological appearance of a squamous cell cancer varies with the depth of the biopsy. For that reason, a biopsy including the subcutaneous tissue and basalar epithelium, to the surface is necessary for correct diagnosis. The performance of a shave biopsy (see skin biopsy) might not acquire enough information for a diagnosis. An inadequate biopsy might be read as actinic keratosis with follicular involvement. A deeper biopsy down to the dermis or subcutaneous tissue might reveal the true cancer. An excision biopsy is ideal, but not practical in most cases. An incisional or punch biopsy is preferred. A shave biopsy is least ideal, especially if only the superficial portion is acquired.
This form of cancer is often seen in those who chew tobacco or use snuff orally, so much so that it is sometimes referred to as "Snuff dipper's cancer." Chewing betel nuts is an additional risk factor commonly seen in Taiwan.
The US Preventive Services Task Force (USPSTF) in 2013 stated evidence was insufficient to determine the balance of benefits and harms of screening for oral cancer in adults without symptoms by primary care providers. The American Academy of Family Physicians comes to similar conclusions while the American Cancer Society recommends that adults over 20 years who have periodic health examinations should have the oral cavity examined for cancer. The American Dental Association recommends that providers remain alert for signs of cancer during routine examinations.
There are a variety of screening devices, however, there is no evidence that routine use of these devices in general dental practice is helpful. However, there are compelling reasons to be concerned about the risk of harm this device may cause if routinely used in general practice. Such harms include false positives, unnecessary surgical biopsies and a financial burden on the patient.
The long-term outcome of squamous cell carcinomas is dependent upon several factors: the sub-type of the carcinoma, available treatments, location(s) and severity, and various patient health-related variables (accompanying diseases, age, etc.). Generally, the long-term outcome is positive, as less than 4% of Squamous cell carcinoma cases are at risk of metastasis. Some particular forms of squamous cell carcinomas have a higher mortality rate. One study found squamous cell carcinoma of the penis had a much greater rate of mortality than some other forms of squamous cell carcinoma, that is, about 23%, although this relatively high mortality rate may be associated with possibly latent diagnosis of the disease due to patients avoiding genital exams until the symptoms are debilitating, or refusal to submit to a possibly scarring operation upon the genitalia. Squamous cell carcinoma occurring in the organ transplant population is also associated with a higher risk of mortality.
Surgical excision or laser therapy are possible treatments. Surgical excision alone was effective for controlling VC, but elective neck dissection was not necessary even in patients in the advanced stages.
Early diagnosis of oral cancer patients would decrease mortality and help to improve treatment. Oral surgeons and dentists can diagnose these patients in the early stages. Health providers, dentists, and oral surgeons shall have high knowledge and awareness that would help them to provide better diagnosis for oral cancer patients. An examination of the mouth by the health care provider, dentist, oral surgeons shows a visible and/or palpable (can be felt) lesion of the lip, tongue, or other mouth area. The lateral/ventral sides of the tongue are the most common sites for intraoral SCC. As the tumor enlarges, it may become an ulcer and bleed. Speech/talking difficulties, chewing problems, or swallowing difficulties may develop. A feeding tube is often necessary to maintain adequate nutrition. This can sometimes become permanent as eating difficulties can include the inability to swallow even a sip of water. The doctor can order some special investigations which may include a chest x-ray, CT or MRI scans, and tissue biopsy.
While a dentist, physician or other health professional may suspect a particular lesion is malignant, there is no way to tell by looking alone - since benign and malignant lesions may look identical to the eye. A non-invasive brush biopsy (BrushTest) can be performed to rule out the presence of dysplasia (pre-cancer) and cancer on areas of the mouth that exhibit an unexplained color variation or lesion. The only definitive method for determining if cancerous or precancerous cells are present is through biopsy and microscopic evaluation of the cells in the removed sample. A tissue biopsy, whether of the tongue or other oral tissues and microscopic examination of the lesion confirm the diagnosis of oral cancer or precancer.
Prognosis can range considerably for patients, depending where on the scale they have been staged. Generally speaking, the earlier the cancer is diagnosed, the better the prognosis. The overall 5-year survival rate for all stages of penile cancer is about 50%.
People with HPV-mediated oropharyngeal cancer tend to have higher survival rates. The prognosis for people with oropharyngeal cancer depends on the age and health of the person and the stage of the disease. It is important for people with oropharyngeal cancer to have follow-up exams for the rest of their lives, as cancer can occur in nearby areas. In addition, it is important to eliminate risk factors such as smoking and drinking alcohol, which increase the risk for second cancers.
The differential for OSSN includes pterygium, pingueculum, papilloma, solar keratosis, lipoma, lymphoma, chronic blepharoconjunctivitis, inflammation, melanoma, ocular pannus, pyogenic granuloma, kaposi sarcoma, keratocanthoma, mucoepidermoid carcinoma, pseudoepitheliomatous hyperplasia, and adenocarcinoma. While confocal microscopy can be used for diagnosis, biopsy is considered the standard, especially before treatment with a cytotoxic medication.
Avoidance of recognised risk factors (as described above) is the single most effective form of prevention. Regular dental examinations may identify pre-cancerous lesions in the oral cavity.
When diagnosed early, oral, head and neck cancers can be treated more easily and the chances of survival increase tremendously. As of 2017 it was not known if existing HPV vaccines can help prevent head and neck cancer.
Staging of nasopharyngeal carcinoma is based on clinical and radiologic examination. Most patients present with Stage III or IV disease.
Stage I is a small tumor confined to nasopharynx.
Stage II is a tumor extending in the local area, or that with any evidence of limited neck (nodal) disease.
Stage III is a large tumor with or without neck disease, or a tumor with bilateral neck disease.
Stage IV is a large tumor involving intracranial or infratemporal regions, an extensive neck disease, and/or any distant metastasis.
There are several treatment options for penile cancer, depending on staging. They include surgery, radiation therapy, chemotherapy, and biological therapy. The most common treatment is one of five types of surgery:
- Wide local excision—the tumor and some surrounding healthy tissue are removed
- Microsurgery—surgery performed with a microscope is used to remove the tumor and as little healthy tissue as possible
- Laser surgery—laser light is used to burn or cut away cancerous cells
- Circumcision—cancerous foreskin is removed
- Amputation (penectomy)—a partial or total removal of the penis, and possibly the associated lymph nodes.
Radiation therapy is usually used adjuvantly with surgery to reduce the risk of recurrence. With earlier stages of penile cancer, a combination of topical chemotherapy and less invasive surgery may be used. More advanced stages of penile cancer usually require a combination of surgery, radiation and chemotherapy.
In addition to all the above, treatment of the underlying disease like brucellosis, is important to limit disease recurrence.
Overall, five-year survival rates for vulvar cancer are around 78% but may be affected by individual factors including cancer stage, cancer type, patient age and general medical health. Five-year survival is greater than 90% for patients with stage I lesions but decreases to 20% when pelvic lymph nodes are involved. Lymph node involvement is the most important predictor of prognosis. Thus, early diagnosis is important.
Anatomical staging supplemented preclinical staging starting in 1988. FIGO’s revised TNM classification system uses tumor size (T), lymph node involvement (N) and presence or absence of metastasis (M) as criteria for staging. Stages I and II describe the early stages of vulvar cancer that still appear to be confined to the site of origin. Stage III cancers include greater disease extension to neighboring tissues and inguinal lymph nodes on one side. Stage IV indicates metastatic disease to inguinal nodes on both sides or distant metastases.
Diagnostic tests typically include complete blood tests, urinalysis, urine culture, X-rays of the abdomen and chest, and bladder imaging. The definitive diagnosis of bladder cancer will require a tissue biopsy and subsequent examination of the cells under the microscope.
Cancer has spread to other parts of the body; the tumor may be any size and may have spread to lymph nodes.
HPV+OPC is usually diagnosed at a more advanced stage than HPV-OPC, with 75–90% having involvement of regional lymph nodes. Genetic signatures of HPV+ and HPV- OPC are different. HPV+OPC is associated with expression level of the E6/E7 mRNAs and of p16. Nonkeratinizing squamous cell carcinoma strongly predicts HPV-association. HPV16 E6/E7-positive cases are histopathologically characterized by their verrucous or papillary (nipple like) structure and koilocytosis of the adjacent mucosa. Approximately 15% of HNSCCs are caused by HPV16 infection and the subsequent constitutive expression of E6 and E7, and some HPV-initiated tumors may lose their original characteristics during tumor progression. High-risk HPV types may be associated with oral carcinoma, by cell-cycle control dysregulation, contributing to oral carcinogenesis and the overexpression of mdm2, p27 and cathepsin B.
HPV+OPC is not merely characterized by the presence of HPV-16. Only the expression of viral oncogenes within the tumor cells plus the serum presence of E6 or E7 antibodies is unambiguously conclusive. There is not a standard HPV testing method in head and neck cancers, both in situ hybridization (ISH) and polymerase chain reaction (PCR) are commonly used. Both methods have comparable performance for HPV detection, however it is important to use appropriate sensitivity controls. Immunohistochemistry (IHC) staining of the tissue for p16 is frequently used as a cost effective surrogate for HPV in OPC, compared to ISH or PCR but there is a small incidence of HPV-negative p16-positive disease accounting for about 5% of HPV-OPC.
When associated with the prostate, squamous cell carcinoma is very aggressive in nature. It is difficult to detect as there is no increase in prostate specific antigen levels seen; meaning that the cancer is often diagnosed at an advanced stage.
Most conjunctival squamous cell carcinomas are removed with surgery. A few selected cases are treated with topical medication. Surgical excision with a free margin of healthy tissue is a frequent treatment modality. Radiotherapy, given as external beam radiotherapy or as brachytherapy (internal radiotherapy), can also be used to treat squamous cell carcinomas.
Human papillomavirus infection (HPV) has been associated with SCC of the oropharynx, lung, fingers and anogenital region.
Because most bladder cancers are invasive into the bladder wall, surgical removal is usually not possible. The majority of transitional cell carcinomas are treated with either traditional chemotherapy or nonsteroidal anti-inflammatory drugs.
In the treatment of Kangri cancer, surgery is, most often, the first-line course of action to remove the primary tumor.
External beam radiotherapy has been used in one person to prevent the relapse and growth of tumor metastases to the head and neck regions. The prophylactic applications of radiation have been noted as “encouraging” in this one case, reducing some tumors and eliminating others.
Another study with a couple of the same authors found that radiotherapy after surgery helped with the reduction and cure of head and neck tumors in additional cases. The researchers suggest that external beam radiotherapy should be part of the treatment course for patients who have or at risk of developing tumors in the head and neck areas.