Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
Prenatal testing may be used to identify the existence of NF-1 in the fetus. For embryos produced via in vitro fertilisation, it is possible via preimplantation genetic diagnosis to screen for NF-1.
Chorionic villus sampling or amniocentesis can be used to detect NF-1 in the fetus.
People with NF-1 have a 50% percent chance of passing the disorder on to their kids, but people can have a child born with NF-1 when they themselves do not have it. This is caused in a spontaneous change in the genes during pregnancy.
The National Institutes of Health (NIH) has created specific criteria for the diagnosis of NF-1. Two of these seven "Cardinal Clinical Features" are required for positive diagnosis. There is practical flowchart to distinguish between NF1, NF2 and schwannomatosis.
- Six or more café-au-lait spots over 5 mm in greatest diameter in pre-pubertal individuals and over 15 mm in greatest diameter in post-pubertal individuals. Note that multiple café-au-lait spots alone are not a definitive diagnosis of NF-1 as these spots can be caused by a number of other conditions.
- Two or more neurofibromas of any type or 1 plexiform neurofibroma
- Freckling in the axillary (Crowe sign) or inguinal regions
- Optic glioma
- Two or more Lisch nodules (pigmented iris hamartomas)
- A distinctive osseous lesion such as sphenoid dysplasia, or thinning of the long bone cortex with or without pseudarthrosis.
- A first degree relative (parent, sibling, or offspring) with NF-1 by the above criteria.
DNA testing is now the preferred method of establishing a diagnosis for MEN 2B, and is thought to be almost 100% sensitive and specific. Gordon et al. reported cases of a difference disease—the "multiple mucosal neuroma syndrome"—having the physical phenotype of MEN2B, but without variations in the RET gene and without malignancy.
MEN2B should be entertained as a diagnosis whenever a person is found to have either medullary thyroid carcinoma or pheochromocytoma. Before DNA testing became available, measurement of serum calcitonin was the most important laboratory test for MEN2B. Calcitonin is produced by the "C" cells of the thyroid, which, because they are always hyperplastic or malignant in MEN2B, produce more calcitonin than normal. Calcitonin levels remain a valuable marker to detect recurrence of medullary thyroid carcinoma after thyroidectomy.
Luxol fast blue staining identifies myelin sheathing of some fibers, and lesional cells react immunohistochemically for S-100 protein, collagen type IV, vimentin, NSE, and neural filaments. More mature lesions will react also for EMA, indicating a certain amount of perineurial differentiation. Early lesions, rich in acid mucopolysaccharides, stain positively with alcian blue. When medullary thyroid cancer is present, levels of the hormone calcitonin are elevated in serum and urine. Under the microscope, tumors may closely resemble traumatic neuroma, but the streaming fascicles of mucosal neuroma are usually more uniform and the intertwining nerves of the traumatic neuroma lack the thick perineurium of the mucosal neuroma. Inflammatory cells are not seen in the stroma and dysplasia is not present in the neural tissues.
Without treatment, persons with MEN2B die prematurely. Details are lacking, owing to the absence of formal studies, but it is generally assumed that death in the 30s is typical unless prophylactic thyroidectomy and surveillance for pheochromocytoma are performed (see below). The range is quite variable, however: death early in childhood can occur, and it is noteworthy that a few untreated persons have been diagnosed in their 50s. Recently, a larger experience with the disease "suggests that the prognosis in an individual patient may be better than previously considered."
Thyroidectomy is the mainstay of treatment, and should be performed without delay as soon as a diagnosis of MEN2B is made, even if no malignancy is detectable in the thyroid. Without thyroidectomy, almost all patients with MEN2B develop medullary thyroid cancer, in a more aggressive form than MEN 2A. The ideal age for surgery is 4 years old or younger, since cancer may metastasize before age 10.
Pheochromocytoma - a hormone secreting tumor of the adrenal glands - is also present in 50% of cases. Affected individuals are encouraged to get yearly screenings for thyroid and adrenal cancer.
Because prophylactic thyroidectomy improves survival, blood relatives of a person with MEN2B should be evaluated for MEN2B, even if lacking the typical signs and symptoms of the disorder.The mucosal neuromas of this syndrome are asymptomatic and self-limiting, and present no problem requiring treatment. They may, however, be surgically removed for aesthetic purposes or if they are being constantly traumatized.
Identifying the "RB1" gene mutation that led to a child's retinoblastoma can be important in the clinical care of the affected individual and in the care of (future) siblings and offspring.It may run in the family.
1. Bilaterally affected individuals and 13-15% of unilaterally affected individuals, are expected to show an RB1 mutation in blood. By identifying the "RB1" mutation in the affected individual, (future) siblings, children, and other relatives can be tested for the mutation; if they do not carry the mutation, child relatives are not at risk of retinoblastoma so need not undergo the trauma and expense of examinations under anaesthetic. For the 85% of unilaterally affected patients found not to carry either of their eye tumor RB1 mutations in blood, neither molecular testing nor clinical surveillance of siblings is required.
2. If the "RB1" mutation of an affected individual is identified, amniotic cells in an at-risk pregnancy can be tested for the family mutation; any fetus that carries the mutation can be delivered early, allowing early treatment of any eye tumors, leading to better visual outcomes.
3. For cases of unilateral retinoblastoma where no eye tumor is available for testing, if no "RB1" mutation is detected in blood after high sensitivity molecular testing (i.e. >93% RB1 mutation detection sensitivity), the risk of a germline "RB1" mutation is reduced to less than 1%, a level at which only clinic examination (and not examinations under anaesthetic) is recommended for the affected individual and their future offspring (National Retinoblastoma Strategy, Canadian Guidelines for Care).
If the eye examination is abnormal, further testing may include imaging studies, such as computerized tomography (CT), magnetic resonance imaging (MRI), and ultrasound. CT and MRI can help define the structure abnormalities and reveal any calcium depositions. Ultrasound can help define the height and thickness of the tumor. Bone marrow examination or lumbar puncture may also be done to determine any metastases to bones or the brain.
Urine catecholamine level can be elevated in pre-clinical neuroblastoma. Screening asymptomatic infants at three weeks, six months, and one year has been performed in Japan, Canada, Austria and Germany since the 1980s. Japan began screening six-month-olds for neuroblastoma via analysis of the levels of homovanillic acid and vanilmandelic acid in 1984. Screening was halted in 2004 after studies in Canada and Germany showed no reduction in deaths due to neuroblastoma, but rather caused an increase in diagnoses that would have disappeared without treatment, subjecting those infants to unnecessary surgery and chemotherapy.
A recommend surveillance program for Multiple Endocrine Neoplasia Type 1 has been suggested by the International Guidelines for Diagnosis and Therapy of MEN syndromes group.
Tissue biopsy is the diagnostic modality of choice. Due to a high incidence of lymph node involvement, a sentinel lymph node biopsy is often performed. A common characteristic of epithelioid sarcoma (observed in 80% of all cases) is the loss of function of the SMARCB1 gene (also termed BAF47, INI1, or hSNF5). Immunohistochemical staining of INI1 is available and can be used for the diagnosis of epithelioid sarcoma. MRI is the diagnostic modality of choice for imaging prior to biopsy and pathologic diagnosis, with the primary role being the determination of anatomic boundaries.
Unlike diagnostic efforts prompted by symptoms and medical signs, cancer screening involves efforts to detect cancer after it has formed, but before any noticeable symptoms appear. This may involve physical examination, blood or urine tests or medical imaging.
Cancer screening is not available for many types of cancers. Even when tests are available, they may not be recommended for everyone. "Universal screening" or "mass screening" involves screening everyone. "Selective screening" identifies people who are at higher risk, such as people with a family history. Several factors are considered to determine whether the benefits of screening outweigh the risks and the costs of screening. These factors include:
- Possible harms from the screening test: for example, X-ray images involve exposure to potentially harmful ionizing radiation
- The likelihood of the test correctly identifying cancer
- The likelihood that cancer is present: Screening is not normally useful for rare cancers.
- Possible harms from follow-up procedures
- Whether suitable treatment is available
- Whether early detection improves treatment outcomes
- Whether the cancer will ever need treatment
- Whether the test is acceptable to the people: If a screening test is too burdensome (for example, extremely painful), then people will refuse to participate.
- Cost
The U.S. Preventive Services Task Force (USPSTF) issues recommendations for various cancers:
- Strongly recommends cervical cancer screening in women who are sexually active and have a cervix at least until the age of 65.
- Recommend that Americans be screened for colorectal cancer via fecal occult blood testing, sigmoidoscopy, or colonoscopy starting at age 50 until age 75.
- Evidence is insufficient to recommend for or against screening for skin cancer, oral cancer, lung cancer, or prostate cancer in men under 75.
- Routine screening is not recommended for bladder cancer, testicular cancer, ovarian cancer, pancreatic cancer, or prostate cancer.
- Recommends mammography for breast cancer screening every two years from ages 50–74, but does not recommend either breast self-examination or clinical breast examination. A 2013 Cochrane review concluded that breast cancer screening by mammography had no effect in reducing mortality because of overdiagnosis and overtreatment.
The staging for epithelioid sarcoma takes into account size and location of the primary tumor, lymph node involvement, presence and location of metastasis, and histologic grade (a measure of disease aggressiveness)
The criteria for diagnosing BACs have changed since 1999. Under the new definition, BAC is defined as a tumor that grows in a lepidic (that is, a scaly covering) fashion along pre-existing airway structures, without detectable invasion or destruction of the underlying tissue, blood vessels, or lymphatics. Because invasion must be ruled out, BAC can be diagnosed only after complete sectioning and examination of the entire tumor, not using biopsy or cytology samples. BAC is considered a pre-invasive malignant lesion that, after further mutation and progression, eventually generates an invasive adenocarcinoma. Therefore, it is considered a form of carcinoma "in situ" (CIS).
There are several ways to diagnose Hypopharyngeal Cancer.
- Physical Examination:
The doctor checks for swollen lymph nodes and may look down the patient’s throat with a long handled mirror.
- Endoscopy, Esophagoscopy, or Bronchoscopy:
Inserted into the nose or mouth of the patient, this a thin, lighted tube that allows the doctor to see farther down the throat, into the esophagus or into the trachea.
- Biopsy:
This is a small tissue sample that can be acquired during an endosopy, esophagoscopy, or bronchoscopy. The tissue is analyzed for the presences of cancer cells.
- CT scan or MRI:
These tests will give doctors a detailed picture of any abnormalities in the body. For a CT scan, the patient often swallows a dye that coats the throat and provides a better image. An MRI is a better tool if the patient is pregnant because the test uses no radiation.
Because OMS is so rare and occurs at an average age of 19 months (6 to 36 months), a diagnosis can be slow. Some cases have been diagnosed as having been caused by a virus. After a diagnosis of OMS is made, an associated neuroblastoma is discovered in half of cases, with median delay of 3 months.
The interictal EEG pattern is usually normal.
Management of MEN2 patients includes thyroidectomy including cervical central and bilateral lymph nodes dissection for MTC, unilateral adrenalectomy for unilateral pheochromocytoma or bilateral adrenalectomy when both glands are involved and selective resection of pathologic parathyroid glands for primary hyperparathyroidism.
Familial genetic screening is recommended to identify at risk subjects who will develop the disease, permitting early management by performing prophylactic thyroidectomy, giving them the best chance of cure.
Prognosis of MEN2 is mainly related to the stage-dependant prognosis of MTC indicating the necessity of a complete thyroid surgery for index cases with MTC and the early thyroidectomy for screened at risk subjects.
Definitive diagnosis is made by suction biopsy of the distally narrowed segment. A histologic examination of the tissue would show a lack of ganglionic nerve cells. Diagnostic techniques involve anorectal manometry, barium enema, and rectal biopsy.
The suction rectal biopsy is considered the current international gold standard in the diagnosis of Hirschsprung's disease.
Radiologic findings may also assist with diagnosis. Cineanography (fluoroscopy of contrast medium passing anorectal region) assists in determining the level of the affected intestines.
Antineoplastic resistance, often used interchangeably with chemotherapy resistance, is the multiple drug resistance of neoplastic (cancerous) cells, or the ability of cancer cells to survive and grow despite anti-cancer therapies.
There are two general causes of antineoplastic therapy failure: Inherent genetic characteristics, giving cancer cells their resistance, which is rooted in the concept of cancer cell heterogeneity and acquired resistance after drug exposure. Altered membrane transport, enhanced DNA repair, apoptotic pathway defects, alteration of target molecules, protein and pathway mechanisms, such as enzymatic deactivation.
Since cancer is a genetic disease, two genomic events underlie acquired drug resistance: Genome alterations (e.g. gene amplification and deletion) and epigenetic modifications.
Cancer cells are constantly using a variety of tools, involving genes, proteins and altered pathways, to ensure their survival against antineoplastic drugs.
Staging cancer is a way of marking the cancer’s progression and is measured on a 0 to 4 (IV) scale. To determine
each stage, smaller categories must be defined first: T. N. M. (tumor, lymph nodes, and metastasis). These were developed by the American Joint Committee on Cancer.
Oudtshoorn is a town in Western Cape (formerly Cape Province), South Africa, where KWE ("Oudtshoorn skin") was first described. The disorder is quite prevalent among Afrikaners of South Africa, a population which can be defined as caucasoid native-speakers of Afrikaans, with northwestern European lineage. Among this group, KWE occurs at a rate of approximately 1/7,200.
This relatively high rate of occurrence has been attributed to the founder effect, in which a small, often consanguinous population is formed out of the larger ancestral population, resulting in a loss of genetic diversity. In the context of KWE, the founder effect was confirmed by haplotype analysis, which indicates that the chromosomal origin of a possible genetic mutation responsible for the disorder is particularly common among affected Afrikaners. This is also true in other South Africans of European descent with KWE, and the chromosome of interest in both these and Afrikaner patients strongly points to an unspecified ancestor or ancestral group that may have settled around the Oudtshoorn area.
A second lineage known to exhibit KWE has been reported in Germany, although there it is less prevalent and appears to involve the chromosome from a different ancestral origin than that seen in Afrikaners. KWE has also been noted in other countries around the northwestern region of Europe, such as Denmark.
MCACL has a much more favorable prognosis than most other forms of adenocarcinoma and most other NSCLC's. Cases have been documented of continued growth of these lesions over a period of 10 years without symptoms or metastasis. The overall mortality rate appears to be somewhere in the vicinity of 18% to 27%, depending on the criteria that are used to define this entity.
Chondroid lipomas are deep-seated, firm, yellow tumors that characteristically occur on the legs of women. They exhibit a characteristic translocation t(11;16) with a resulting C11orf95-MKL2 fusion oncogene.
KWE is of unknown cause, as at the present time, no specific mutation of any gene has been established as the cause of the disorder. Research has shown, however, that the gene involved is located on human chromosome 8.
A candidate gene is a gene that is suspected to cause a disease or disorder. In KWE, this gene is known to be located in the area between chromosome 8q22 and 8q23. Within this region, the occurrence of loss of heterozygosity (simultaneous loss of function in both alleles of a gene) has been associated with malignancy, including certain types of breast and lung cancer. During the investigation for a KWE candidate gene in this same region, twelve protein transcripts were evaluated between microsatellite markers D8S550 and D8S1759, which is a critical area shown to be the source of KWE pathogenesis. Among the twelve transcripts identified, one corresponded to the "BLK" gene, which encodes the enzyme "B-lymphoid tyrosine kinase". Four other of these transcripts included a myotubularin ("MTMR8"), a potential human homologue of the mouse "Amac1" enzyme, a transcript similar to the mouse "L-threonine 3-dehydrogenase" gene, and one similar to a human oncogene. The remaining seven transcripts did not resemble any currently known genes. In all, none of the twelve transcripts displayed any evidence of pathogenic involvement with KWE. As a transcriptional map of this critical area is being drawn, based on microsatellite identification, haplotype analysis and other measures; localization of the gene associated with KWE pathogenesis is an ongoing process.
Antineoplastic resistance, synonymous with chemotherapy resistance, is the ability of cancer cells to survive and grow despite different anti-cancer therapies, i.e. their multiple drug resistance. There are two general causes of antineoplastic therapy failure:
Inherent resistance, such as genetic characteristics, giving cancer cells their resistance from the beginning, which is rooted in the concept of cancer cell heterogeneity and acquired resistance after drug exposure.
The overall 5-year survival is estimated to be approximately 90%, but for individuals the prognosis is highly dependent on individual staging and treatment. Early removal tends to promote positive outcomes.
Tumor-specific loss-of-heterozygosity (LOH) for chromosomes 1p and 16q identifies a subset of Wilms tumor patients who have a significantly increased risk of relapse and death. LOH for these chromosomal regions can now be used as an independent prognostic factor together with disease stage to target intensity of treatment to risk of treatment failure. Genome-wide copy number and LOH status can be assessed with virtual karyotyping of tumor cells (fresh or paraffin-embedded).
Statistics may sometimes show more favorable outcomes for more aggressive stages than for less aggressive stages, which may be caused by more aggressive treatment and/or random variability in the study groups. Also, a stage V tumor is not necessarily worse than a stage IV tumor.